[1]
S. Mafe, P. Ramirez, A. Alcaraz, V. M. Aguilella, Handbook of bipolar membrane technology, Enschede: Twente University Press, 2000, pp.49-78.
Google Scholar
[2]
B. Bauer, F. J. Gerner, H. Strathmann, Development of bipolar membranes, Desalination. 68 (1988) 279-292.
DOI: 10.1016/0011-9164(88)80061-4
Google Scholar
[3]
I. Honma, S. Hirakawa, K. Yamada, Synthesis of Organic/inorganic Nanocomposites Protonic Conducting Membrane Through Sol-gel Processes, Solid State Ionics. 118 (1999) 29-36.
DOI: 10.1016/s0167-2738(98)00450-0
Google Scholar
[4]
C. Cornelius, C. Hibshman, E. Marand, Hybrid organic-inorganic membranes, Sep. Purif. Technol. 25 (2001) 181-193.
DOI: 10.1016/s1383-5866(01)00102-2
Google Scholar
[5]
H. Strathmann, J. J. Krol, H. J. Rapp, Limiting current density and water dissociation in bipolar membranes. J. Membrane Sci. 125 (1997) 123-142.
DOI: 10.1016/s0376-7388(96)00185-8
Google Scholar
[6]
T. W. Xu, Ion exchange membranes: state of their development and perspective, J. Membrane Sci. 263 (2005) 1-29.
Google Scholar
[7]
C. Guizard, A. Bac, M. Barboiu, Hybridorganic-inorganic membranes with specific transport properties: applicationsin separation and sensors technologies, Sep. Purif. Technol. 25 (2001) 167-180.
DOI: 10.1016/s1383-5866(01)00101-0
Google Scholar
[8]
R. Simons, A novel method for preparing bipolar membranes, Electrochim. Acta. 31 (1986) 1175-1176.
Google Scholar
[9]
F. Hanada, K. Hirayama, N. Ohmura, S. Tanaka, U. S. Patent 5, 221, 455. (1993).
Google Scholar
[10]
R. Simons, A mechanism for water flow in bipolar membranes, J. Membrane Sci. 78 (1993) 13-23.
Google Scholar
[11]
F. Posar, M. Riccardi, U. S. Patent 5, 380, 413. (1995).
Google Scholar
[12]
Z. X. Huang, X. Zheng, R. Y. Chen, X. Chen, Z. Chen, Electro-generation of glyoxylic acid in pairs by modified sodium alginate/chitosan bipolar membrane. J. Chem. Eng. Chin. Univ. 22 (2008) 725-728.
Google Scholar
[13]
Y. H. Wang, X. L. Ma, R. Y. Chen, X. Zheng, Z. Chen, Electro-oxidized preparation of 3-methyl-2-formyl-amino pyridine by bipolar membrane, Acta. Phys. -Chim. Sin. 24 (2008) 1041-1046.
Google Scholar
[14]
A. Fujishima, T. N. Rao, D. A. Tryk, Titanium dioxide photocatalysis, Photoch. Photobio. Sci. 1 (2000) 1-7.
Google Scholar
[15]
Y. X. Ren, R. Y. Chen, X. Zheng, Z. Chen, Research of anthraquinone/TiO2 modified films for degradation of malachite green, Chemintimes. 19 (2005) 14-18.
Google Scholar
[16]
H. Y. Li, N. N. Zhang, Z. K. Luo, H. H. Cai, X. Q. Du, Y. C. Chen, M. L. Wang, Relationship between photo-catalysis and hydrophilicity of titania coating on glass, Rare Metal Mater. Eng. 37 (2008) 55-58.
Google Scholar
[17]
R. Q. Xu, T. W. Xu, W. H. Yang, Status and development of studies on the intermediate layer of a bipolar membrane, Membrane Sci. Technol. 22 (2002) 42-47.
Google Scholar
[18]
F. M. Meng, L. Xiao, Z. Q. Sun, The evolution of the research on photocatalytic properties of the TiO2 thin film. J. Anhui Univ. 33 (2009) 81-84.
Google Scholar
[19]
J. Guan, W. D. Liang, Progress in research on visible light response TiO2 photocatalyst, J. Wuhan Univ. Sci. Technol. 29 (2006) 164-167.
Google Scholar
[20]
S. X. Liu, C. L. Sun, Progress of photocatalyst TiO2 modification, J. Northeast Forestry Univ. 31 ( 2003) 53-56.
Google Scholar