Artificial Neural Network to Predict the Hot Deformation Behavior of Super 13Cr Martensitic Stainless Steel

Abstract:

Article Preview

The hot deformation behavior of super 13Cr martensitic stainless steel was investigated using artificial neural network (ANN). Hot compression tests were carried out at the temperature range of 950°C to 1200°C and strain rate range of 0.1–50s–1 at an interval of an order of magnitude. Based on the limited experimental data, the ANN model for the constitutive relationship existed between flow stress and strain, strain rate and deformation temperature was developed by back-propagation (BP) neural network method. A three layer structured network with one hidden layer and ten hidden neurons was trained and the normalization method was employed in training for avoiding over fitting. Modeling results show that the developed ANN model can efficiently predict the flow stress of the steel and reflect the hot deformation behavior in the whole deforming process.

Info:

Periodical:

Edited by:

Hyungsun Kim, Jian Feng Yang, Chuleol Hee Han, Somchai Thongtem and Soo Wohn Lee

Pages:

361-364

DOI:

10.4028/www.scientific.net/MSF.695.361

Citation:

Y. Han et al., "Artificial Neural Network to Predict the Hot Deformation Behavior of Super 13Cr Martensitic Stainless Steel", Materials Science Forum, Vol. 695, pp. 361-364, 2011

Online since:

July 2011

Export:

Price:

$35.00

In order to see related information, you need to Login.

In order to see related information, you need to Login.