Oxidation Behaviors of Pure Ti Thermal Plasma Spray Coated Mo-Si-B Alloys

Abstract:

Article Preview

Mo-Si-B alloys have been received an attention due to the high temperature strength and phase stability. However, the nature of poor oxidation resistance often limits the application of the alloy system. The unstable MoO3 phase is naturally produced when the alloys were exposed at low and /or high temperature in an air atmosphere. In order to resolve the poor oxidation resistance of the alloy system, several attempts have been made via surface coatings and/or component additions. In this study, the oxidation behaviors of the Ti powder thermal spray coated Mo-Si-B alloys have been investigated in order to identify the underlying mechanism for the effect of precursor Ti coatings on Mo-Si-B alloys. The oxidation tests performed at 1100 °C show that the Ti powder was tightly bonded and reacted with the surface of the substrate, and TiO2 layer was formed at the outer surface of the coated Ti layer as a result of oxidation exposure. The oxidation behaviors of pure elemental component coated Mo-Si-B alloys have been discussed in terms of microstructural observations during oxidation tests.

Info:

Periodical:

Edited by:

Hyungsun Kim, Jian Feng Yang, Chuleol Hee Han, Somchai Thongtem and Soo Wohn Lee

Pages:

365-368

DOI:

10.4028/www.scientific.net/MSF.695.365

Citation:

Y. H. Song et al., "Oxidation Behaviors of Pure Ti Thermal Plasma Spray Coated Mo-Si-B Alloys", Materials Science Forum, Vol. 695, pp. 365-368, 2011

Online since:

July 2011

Export:

Price:

$35.00

In order to see related information, you need to Login.

In order to see related information, you need to Login.