Oxidation Properties of Metal/Ceramic Interconnectors for SOFC’s in Air, Ar-H2-H2O and Ar-CH4-H2O Atmospheres

Article Preview

Abstract:

The present paper is a review on the oxidation kinetics, electrical properties, chromium vaporization rate and microstructure investigations of oxide products formed on an uncoated Crofer 22 APU alloy and 1.4762 steel and coated by means of pulsed laser deposition and screen-printing methods with films of (La,Sr)CoO3, (La,Ca)CrO3, (La,Sr)CrO3, (La,Sr)(Co,Fe)O3 and MnCo2O4 in air and Ar-H2-H2O and Ar-CH4-H2O gas mixtures at 1023-1173 K for up to 1200 hrs. Microstructure investigations using SEM-EDS showed the influence of the reaction products formed in different atmospheres at the steel/coating interface on the electrical properties and Cr vaporization rate of these composite materials, which are used for construction of SOFC interconnects.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

400-405

Citation:

Online since:

September 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. C. Singhal, K. Kendall: High Temperature Solid Oxide Fuel Cells: Fundamentals, Design and Applications (Elsevier, Kidlington Oxford, 2003).

Google Scholar

[2] W. J. Quadakkers, J. Piron-Abellan, V. Shemet, L. Singheiser: Mater. High Temp. Vol. 20 (2003) p.115.

DOI: 10.3184/096034003782749071

Google Scholar

[3] X. Chen, P. Y. Hou, C. P. Jacobson, S. J. Visco, L. C. D. Jonghe: Solid State Ionics Vol. 176 (2005) p.425.

Google Scholar

[4] T. Brylewski. M. Nanko, T. Maruyama, K. Przybylski: Solid State Ionics Vol. 143 (2001) p.131.

Google Scholar

[5] N. Shaigan, W. Qu, D. G. Ivey, W. Chen: J. Pow. Sources Vol. 195 (2010) p.1529.

Google Scholar

[6] T. Kadowaki, T. Shiomitsu, E. Matsuda, H. Nakagawa, H. Tsuneizumi, T. Maruyama: Solid State Ionics Vol. 67 (1993) p.65.

DOI: 10.1016/0167-2738(93)90310-y

Google Scholar

[7] Z. G. Yang, G. G. Xia, J. W. Stevenson: Electrochem. Solid-State Let. Vol. 8 (2005) p. A168.

Google Scholar

[8] X. Montero, N. Jordán, J. Pirón-Abellán, F. Tietz, D. Stöver, M. Cassir, I. Villarreal: J. Electrochem. Soc. Vol. 156 (2009) p. B188.

Google Scholar

[9] P. Gannon, M. Deibert, P. White, R. Smith, H. Chen, W. Priyantha, J. Lucas, V. Gorokhousky: Int. J. Hydrog. Energy Vol. 33 (2008) p.3991.

Google Scholar

[10] S. Fontana, R. Amendola, S. Chevalier, P. Piccardo, G. Caboche: J. Pow. Sources Vol. 171 (2007) p.652.

Google Scholar

[11] K. Przybylski, Portable and Emergency Energy Sources, edited by Z. Stoynov, D. Vladikova, Prof. Marin Drinov Publishing House, Sofia (2006) p.361.

Google Scholar

[12] T. Brylewski, K. Przybylski, J. Morgiel: Mater. Chem. Phys. Vol. 81 (2003) p.434.

Google Scholar

[13] T. Brylewski, K. Przybylski, Mater. Sci. Forum Vol. 595-598 (2008) p.813.

Google Scholar

[14] H. Kurokawa, C. P. Jacobson, L. C. DeJonghe, S. Visco: Solid State Ionics Vol. 178 (2007) p.287.

Google Scholar