[1]
H. Zhang, C. Xing, X. Liang, X. Dai, Z. Fang and S. Zhang: Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single dirac cone on the surface doi: 10. 1038/NPHYS1270/ (Nature physics May, 2009).
DOI: 10.1038/nphys1270
Google Scholar
[2]
P.X. Zhang, G.Y. Zhang, C.T. Lin, and H.U. Hanbermeier: New Thermoelectric materials and new applications, Egypt, J. Sol. Vol. 27 (2004), No. (1).
Google Scholar
[3]
L.R. Alan: Relationship of thermoelectricity to Electronic entropy, Phys. Rev. A30(5): 2843 Bibcode 1984PhRvA. 30. 2843R. doi: 10. 1103(1984)/ PhysRevA. 30. 2843.
Google Scholar
[4]
R. Venktasubramanian et al: Thin-film thermoelectric devices with high temperature figure of merit, Nature Vol. 413 (2001), 597.
Google Scholar
[5]
L.D. Hicks, M.S. Dresselhaus: Effect of quantum-well structures on the thermoelectric figure of merit, Phys. Rev. B 47, (1993) 12727-12731.
DOI: 10.1103/physrevb.47.12727
Google Scholar
[6]
F.A.A. Amin, A.S.S. Al-Ghaffari, M.A.A. Issa, A.M. Hassib: Thermoelectric properties of fine grained (75% Sb2Te3-25% Bi2Te3) p-type and (90% Bi2Te3- 5% Sb2Te3-5%Sb2Se3) n-type alloys, Journal of Material science, 27, (1992) 1250-1254.
DOI: 10.1007/bf01142032
Google Scholar
[7]
M Sakata and M Sato: Accurate Structure Analysis by the Maximum – Entropy Method, Acta Cryst. A46, (1990) 263 – 270.
Google Scholar
[8]
R. Saravanan, M. Charles Robert: Local structure of the thermoelectric material Mg2Si using XRD, J. Alloy and compounds, 479, (2009) 26-31.
DOI: 10.1016/j.jallcom.2008.12.117
Google Scholar
[9]
H.M. Rietveld: J. Appl. Crystallogr. 2, (1969) 65.
Google Scholar
[10]
V. Petrˇı_cˇek, M. Dusˇek, L. Palatinus, in: JANA2000, The Crystallographic Computing System, Institute of Physics, Academy of Sciences of the Czech Republic, Praha, (2000).
Google Scholar
[11]
T. Ida, M. Ando and H. Toroya: Extended pseudo-voigt function for approximating the voigt profile, J. Appl. Cryst. 33, 1311 – 1316 (2000).
DOI: 10.1107/s0021889800010219
Google Scholar
[12]
P. Scherrer, Bestimmung der Grösse und der inneren Struktur von Kolloidteilchen mittels Röntgenstrahlen, Nachr. Ges. Wiss. Göttingen 26 (1918) pp.98-100.
DOI: 10.1007/978-3-662-33915-2_7
Google Scholar
[13]
K. Momma, F. Izumi, R.A. Dilanian: Recent Research Developments in Physics, Part II, 3, Transworld, Research Network, Trivandrum, pp. (2002) 699–726.
Google Scholar
[14]
P. Scherrer: Bestimmung der Grösse und der inneren Struktur von Kolloidteilchen mittels Röntgenstrahlen, Nachr. Ges. Wiss. Göttingen 26 (1918) pp.98-100.
DOI: 10.1007/978-3-662-33915-2_7
Google Scholar
[15]
Information on official website of Dr. Saravanan : saraxraygroup. net.
Google Scholar
[16]
J.I. Langford and A.J.C. Wilson: Scherrer after Sixty Years: A Survey and Some New Results in the Determination of Crystallite Size, J. Appl. Cryst. 11(1978) pp.102-113.
DOI: 10.1107/s0021889878012844
Google Scholar
[17]
J. Bloch, Th. proffen, S J L Billinge, pdffit2 and pdfgui: computer programs for studying nano structure in crystals,J. Phy.: condens. Matter 335219 19(2007).
DOI: 10.1088/0953-8984/19/33/335219
Google Scholar
[18]
I. K. Jeong, J Thompson, T. H. Proffen, A. Perez and S. J. L. Billinge, PDFGetX (A program for obtaining the atomic pair distribution function from X-ray powder diffraction data) (2001).
DOI: 10.1107/s0021889801009207
Google Scholar
[19]
S. J. L. Billinge and M.G. Kanatzidis: The study of disorder, nano crystalline and crystallographically challenged materials with PDF, Chem. Comm, (2004) 749−760.
Google Scholar
[20]
J. Laugier et B Bochu: GRETEP, Domaine universitaire BP 46, 38402 saint martin D'Heres http: /www. inpg. fr / LMGP.
Google Scholar