Ultrasonic, Metallographic and Photo Acoustic Studies on Zircaloy-2

Article Preview

Abstract:

The nuclear material, Zircaloy-2 is studied here by photoacoustics and the results are correlated with ultrasonic measurements and metallographic microstructures. Precipitation of hard intermetalics and formation of α-martensite, due to thermal aging are also explained through photoacoustic studies.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

123-130

Citation:

Online since:

September 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] T. Jayakumar, P. Palanichamy and Baldev Raj. Journal of Nuclear Materials, 255 (1998) 243.

Google Scholar

[2] J. N. Chirigos, S. Kass, W. W. Kirk, and G. J. Salvaggio, Development of Zircaloy-4, in Fuel Element Fabrication with Special Emphasis on Cladding Materials, Proceedings of a Symposium, Vienna. 119, (1960).

Google Scholar

[3] A. E. Powers, Knolls Atomic Power Laboratory of General Electric Report KAPL- 2146. (1961).

Google Scholar

[4] W. K. Anderson, C. J. Beck, A. R. Kephart, and J. S. Theilacker, Engineering Properties as Affected by Nuclear Reactor Service, ASTM-STP-314. 62 (1962).

DOI: 10.1520/stp314-eb

Google Scholar

[5] D. B. Scott, Physical and Mechanical Properties of Zircaloy 2 and 4, USAEC Report WCAP-3269. 1 (1965).

Google Scholar

[6] A. D. Feith, High-Temperature Materials Program: Property Measurements, USAEC Report GEMP-61. 153 (1966).

Google Scholar

[7] J. Cleveland (ed. ), Thermophysical Properties of Materials for Water Cooled Reactors, International Atomic Energy Agency Report IAEA-TECDOC-949. 77 (1997).

Google Scholar

[8] E. G. Price, Thermal Conductivity, Electrical Resistivity, and Specific Heat of CANDU Construction Alloys and AISI Type 403 End Fitting, AECL Report TDVI-3680. 78 (1980).

Google Scholar

[9] D. T. Hagrman, (ed. ), SCDAP/RELAP5/MOD 3. 1 Code Manual: MATPRO - A Library of Materials Properties for Light-Water-Reactor Accident Analysis, NUREG/CR-6150, EGG- 2720. 4 (1995).

DOI: 10.2172/100327

Google Scholar

[10] M. Murabayashi, S. Tanaka and Y. Takahashi, J. Nucl. Sci. and Tech. 12(1975) 661.

Google Scholar

[11] R. E. Taylor, Int. J. Thermophys., 15 (1994) 741.

Google Scholar

[12] K. D. Maglic, N. Lj. Perovic, A. M. Stanimirovic, Int. J. Thermophys., 15(1994) 741.

Google Scholar

[13] A. F. Guillermet, High Temp. - High Press., 19 (1987) 119.

Google Scholar

[14] J. K. Fink and L. Leibowitz, J. Nucl. Mater., 226 (1995) 44.

Google Scholar

[15] K. Jeyadheepan, P. Palanichamy, V. Saminathan, M. Jayachandran, C. Sanjeeviraja, Applied Physics A: Materials Science and Processing, 98 (2010) 919.

Google Scholar

[16] A.J. Anderson, R.B. Thompson, and C.S. Cook, Metallurgical And Materials Transactions A, 30a (1988) (1999).

Google Scholar