Hybrid Nanocomposite of CdSe Quantum Dots and a P3HT-b-PDMAEMA Block Copolymer for Photovoltaic Applications

Article Preview

Abstract:

We synthesized a new hybrid nanocomposite consisting of CdSe quantum dot (QD) and regioregular poly (3-hexylthiophene)-b-poly (N,N-dimethylamino-2-ethylmethacrylate) rod-coil block copolymer to investigate the effects of nanoscale morphology to the photovoltaic properties in inorganic-organic hybrid solar cell. Well-defined conducting rod-coil block copolymers, P3HT-b-PDMAEMA, were synthesized by combination of Grignard metathesis polymerization (GRIM) and atom transfer radical polymerization (ATRP) methods. These rod-coil block copolymers were then mixed with oleic acid capped CdSe QDs through ligand exchange and characterized their nanoscale morphology and optoelectronic properties. These results can be explained by the effects of the bicontinuous electron-donor/electron-acceptor networks in active layer based on rod-coil P3HT-b-PDMAEMA block copolymers blended with CdSe QDs.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

120-124

Citation:

Online since:

September 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] F. Padinger, C. J. Brabec, T. Fromherz, J. C. Hummelen, and N. S. Sariciftci: Opto-Electronics Review 8 (2000) 280-283.

Google Scholar

[2] S. E. Shaheen, R. Radspinner, N. Peyghambarian, and G. E. Jabbour: Appl. Phys. Lett. 79 (2001) 2996-2998.

DOI: 10.1063/1.1413501

Google Scholar

[3] N. S. Sariciftci, L. Smilowitz, A. J. Heeger, and F. Wudl: Science 258 (1992) 1474-1476.

Google Scholar

[4] G. Yu, J. Gao, J. C. Hummelen, F. Wudi, and A. J. Heeger: Science 270 (1995) 1789-1791.

Google Scholar

[5] M. Granstrom, K. Petritsch, A. C. Arias, A. Lux, M. R. Andersson, and R. H. Friend: Nature 395 (1998) 257-260.

Google Scholar

[6] C. J. Brabec, F. Padinger, N. S. Sariciftci, and J. C. Hummelen: J. Appl. Phys. 85 (1999) 6866-6872.

Google Scholar

[7] C. J. Brabec, F. Padinger, J. C. Hummelen, R. A. J. Janssen, and N. S. Sariciftci: Synthetic Metals 102 (1999) 861-864.

DOI: 10.1016/s0379-6779(98)00366-x

Google Scholar

[8] C. J. Brabec, N. S. Sariciftci, and J. C. Hummelen: Adv. Funct. Mater 11, No. 1 (2001) 15-26.

Google Scholar

[9] S. Dayal, N. Kopidakis, D. C. Olson, D. S. Ginley, and G. Rumbles: Nano Lett. 10 (2010) 239-242.

Google Scholar

[10] H. C. Leventis, S. P. King, A. Sudlow, M. S. Hill, K. C. Molloy, and S. A. Haque: Nano Lett. 10 (2010) 1253-1258.

Google Scholar

[11] K. M. Noone, E. Strein, N. C. Anderson, P. Wu, S. A. Jenekhe, and D. S. Ginger: Nano Lett. 10 (2010) 2653-2639.

Google Scholar

[12] J. C. Hindson, Z. Saghi, J. Hernandez-Garrido, P. A. Midgley, and N. C. Greenham: Nano Lett. 11 (2011) 904-909.

DOI: 10.1021/nl104436j

Google Scholar

[13] L. J. A. Koster, E. C. P. Smits, V. D. Mihailetchi, and P. W. M. Blom: Phys. Rev. B 72, 085205 (2005).

Google Scholar

[14] M. C. Scharber, D. Muhlbacher, M. Koppe, P. Denk, C. Waldaug, A. J. Heeger, and C. J. Brabec: Adv. Mater. 18 (2006) 789-794.

DOI: 10.1002/adma.200501717

Google Scholar

[15] Y. Vaynzof, D. Kabra, L. Zhao, L. L. Chua, U. Steiner, and R. H. Friend: ACS Nano Vol. 5, No. 1 (2011) 329-336.

Google Scholar

[16] B. Walker, C. Kim, and T. Nguyen: Chem. Mater. 23 (2011) 470-482.

Google Scholar

[17] M. Jeffries-EL, G. Sauve, and R. D. McCullough: Adv. Mater. 16 (2004) 1017-1019.

Google Scholar

[18] K.-Y. Baek, M. Kamigaito, and M. Sawamoto: J. Polym. Sci. A: Polym. Chem. 40 (2002) 1937-1944.

Google Scholar

[19] Y. Chang, W. Su, and L. Wang: Macromol. Rapid Commun. 29 (2008) 1303-1308.

Google Scholar

[20] J. Boucle, S. Chyla, M. S. P. Shaffer, J. R. Durrant, D. D. C. Bradley, and J. Nelson: Adv. Funct. Mater. 18 (2008) 622-633.

Google Scholar

[21] N. C. Greenham, X. Peng, and A. P. Alivisatos: Phys. Rev. B 54 (1996) 17628-17637.

Google Scholar

[22] D. J. Milliron, A. P. Alivisatos, C. Pitois, C. Edder, and J. M. J. Frechet: Adv. Mater. 15 (2003) 58-61.

Google Scholar

[23] J. J. M. Halls, K. Pichler, R. H. Friend, S. C. Moratti, and A. B. Holmes: Appl. Phys. Lett. 68 (1996) 3120-3122.

Google Scholar

[24] L. A. A. Pettersson, L. S. Roman, and O. Inganas: J. Appl. Phys. 86 (1999) 487-496.

Google Scholar

[25] L. Han, D. Qin, X. Jang, Y. Liu, and Y. Cao: Nanotechnology 17, (2006) 4736-4742.

Google Scholar

[26] S. Kumar and G. D. Scholes, Microchim: Acta 160, (2008) 315-325.

Google Scholar

[27] H. Hoppe, M. Niggemann, C. Winder, J. Kraut, R. Hiesgen, A. Hinsch, D. Meissner, and N. S. Sariciftci: Adv. Funct. Mater. 14, (2004) 1005-1011.

DOI: 10.1002/adfm.200305026

Google Scholar