The Anomalous Photoluminescence and Thermally Stimulated Luminescence from Carbon Nanotubes

Article Preview

Abstract:

The semiconducting property of carbon nanotubes have been investigated by the luminescence measurement. The morphology of carbon nanotubes has been detected by the scanning electric microscope, and the X ray diffraction determines the atomic structure of carbon nanotubes. The carbon nanotubes can be luminescence under laser irradiation. Using the photoluminescence measurement, the emitting spectrum of carbon naotubes is very spread in a near-red emission range and a main peak at 1.3 eV . The temperature dependent of photoluminescence effect indicates that the semiconducting property of carbon nanotubes is very clearly. According to the thermally photoluminescence experiment, the luminescent property of carbon nanotubes is due to the center of energy trap of defect. It is suggested that the luminescence of the semiconducting property result is dominated by the electron trap of defect in the carbon nanotubes system.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

116-119

Citation:

Online since:

September 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. Iijima, Helical microtubules of graphitic carbon, Nature 354 (1991) 56-58.

DOI: 10.1038/354056a0

Google Scholar

[2] W. Z. Li, S. S. Xie, L. X. Qian, B. H. Chang, B. S. Zou, W. Y. Zhou, R. A. Zhao and G. Wang, Large-scale synthesis of aligned carbon nanotubes, Science, 274 (1996) 1701-1703.

DOI: 10.1126/science.274.5293.1701

Google Scholar

[3] Y. Y. Zhang, Y. Shi, F. Chen, S. G. Mhaisalkar, L. J. Li, B. S. Ong and Y. Wu, Poly (3, 3 -didodecylquarterthiophene) field effect transistors with single-walled carbon nanotube based source and drain electrodes, Appl. Phys. Lett. 91 (2007).

DOI: 10.1063/1.2806234

Google Scholar

[4] M. J. O'connell et al., Band Gap Fluorescence from Individual Single-Walled Carbon Nanotubes, Science 297 (2002) 593-596.

Google Scholar

[5] S. M. Bachilo et al., Structure-Assigned Optical Spectra of Single-Walled Carbon Nanotubes, Science 298 (2002) 2361-2366.

DOI: 10.1126/science.1078727

Google Scholar

[6] J. Lefebvre, Y. Homma, and P. Finnie, Bright Band Gap Photoluminescence from Unprocessed Single-Walled Carbon Nanotubes, Phys. Rev. Lett. 90 (2003) 217401-217404.

DOI: 10.1103/physrevlett.90.217401

Google Scholar

[7] D. Yu, Y. Chen, B. Li, X. Chen and M. Zhang, Fabrication and characterization of PbS/multiwalled carbon nanotube heterostructures, Appl. Phys. Lett. 90 (2007) 161103e1-161103e3.

DOI: 10.1063/1.2723651

Google Scholar

[8] G. Hu, M. Cheng, D. Ma, and X. Bao, Synthesis of carbon nanotube bundles with mesoporous structure by a self-assembly solvothermal route, Chem. Mater 15 (2003) 1470-1473.

DOI: 10.1021/cm0209362

Google Scholar

[9] W. D. Zhang, Y. Wen, S. M. Liu, W. C. Tjiu, G. Q. Xu and L. M. Gan, Synthesis of vertically aligned carbon nanotubes on metal deposited quartz plates, Carbon, 40 (2002) 1981-(1989).

DOI: 10.1016/s0008-6223(02)00052-0

Google Scholar

[10] Q. Li, H. Yan, J. Zhang and Z. Liu, Effect of hydrocarbons precursors on the formation of carbon nanotubes in chemical vapor deposition, Carbon, 42 (2004) 829-835.

DOI: 10.1016/j.carbon.2004.01.070

Google Scholar

[11] Y. Kawashima and G. Katagiri, Observation of the out-of-plane mode in the Raman scattering from the graphite edge plane, Phys. Rev. B59 (1999) 62-64.

DOI: 10.1103/physrevb.59.62

Google Scholar

[12] A. Kasuya, Y. Sasaki, Y. Saito, K. Kohji and Y. Nishina, Evidence for Size-Dependent Discrete Dispersions in Single-Wall Nanotubes, Phys. Rev. Lett. 78 (1997) 4434-4437.

DOI: 10.1103/physrevlett.78.4434

Google Scholar

[13] A. M. Rao, S. Bandow, E. Richter and P. C. Eklund, Raman spectroscopy of pristine and doped single wall carbon nanotubes, Thin Solid Films, 331 (1998) 141-147.

DOI: 10.1016/s0040-6090(98)00910-9

Google Scholar

[14] D. Karaiskaj, C. Engtrakul, T. McDonald, M. J. Heben and A. Mascarenhas, Intrinsic and Extrinsic Effects in the Temperature-Dependent Photoluminescence of Semiconducting Carbon Nanotubes, Phys. Rev. Lett. 96 (2006) 106805-106809.

DOI: 10.1103/physrevlett.96.106805

Google Scholar

[15] L. –J. Li, R. J. Nicholas, R. S. Deacon and P. A. Shields, Chirality Assignment of Single-Walled Carbon Nanotubes with Strain , Phys. Rev. Lett. 93 (2004) 156104-156107.

DOI: 10.1103/physrevlett.93.156104

Google Scholar

[16] L. Yang and J. Han, Electronic Structure of Deformed Carbon Nanotubes, Phys. Rev. Lett. 85 (2000) 154-157.

DOI: 10.1103/physrevlett.85.154

Google Scholar

[17] L . Yang, M. P. Anantram, J. Han and J. P. Lu, Band-gap change of carbon nanotubes: Effect of small uniaxial and torsional strain, Phys. Rev. B60 (1999) 13874-13878.

DOI: 10.1103/physrevb.60.13874

Google Scholar

[18] K. Matsuda, Y. Kanemitsu, K. Irie, T. Sqiki, T. Someya, Y. Miyauchi and S. Maruyama, Photoluminescence intermittency in an individual single-walled carbon nanotube at room temperature, Appl. Phys. Lett. 86 (2005) 123116-123118.

DOI: 10.1063/1.1894609

Google Scholar

[19] M. Liao, Z. Feng, S. Yang, C. Chai, Z. Liu, J. Yang and Z. Wang, Anomalous temperature dependence of photoluminescence from a-C: H film deposited by energetic hydrocarbon ion beam, Solid State Comm., 121 (2002) 287-290.

DOI: 10.1016/s0038-1098(01)00489-6

Google Scholar

[20] J. Guo, C. Yang, Z. M. Li, M. Bai, H. J. Liu, G. D. Li, E. G. Wang, C. T. Chan, Z. K. Tang, W. K. Ge and X. Xiao, Efficient visible photoluminescence from carbon nanotubes in zeolite templates, Phys. Rev. Lett. 93 (2004) 017402e1-017402e4.

DOI: 10.1103/physrevlett.93.017402

Google Scholar

[21] D. Karaiskaj, C. Engtrakul, T. McDonald, M. J. Heben and A. Mascarenhas, Intrinsic and extrinsic effects in the temperature-dependent photoluminescence of semiconducting carbon nanotubes, Phys. Rev. Lett. 96 (2006) 106805e1-106805e4.

DOI: 10.1103/physrevlett.96.106805

Google Scholar