Grain Refinement Mechanisms Oterative during Equal Channel Angular Pressing of Aluminium

Article Preview

Abstract:

Grain refinement of aluminum deformed by equal channel angular pressing is strongly dependent on the amount of strain. The refinement process at low to high strain level involves elongation of the existing grains by shear deformation, their subdivision into bands and subgrain formation within bands, intersection of the bands during subsequent passes and finally conversion of the subgrains to grains by continuous dynamic recrystallization process. At room temperature the conversion of subgrains to grains takes place by progressive lattice rotation.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 702-703)

Pages:

135-138

Citation:

Online since:

December 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R. Z. Valiev and T. G. Langdon, Prog. Mater. Sci. 51 (2006) 881-981

Google Scholar

[2] M. Furukawa, Z. Horita, M. Nemoto, T. G. Langdon, J. Mater. Sci. 36 (2001) 2835-2843

Google Scholar

[3] P. B. Prangnell, J. R. Bowen, P. J. Apps, Mater. Sci. Eng. A375-377 (2004) 178-185

Google Scholar

[4] V. M. Segal, Mater Sci Eng, A271 (1999) 322-333

Google Scholar

[5] M. Kawasaki, Z. Horita, T. G. Langdon, Mater Sci Eng, A524 (2009) 143-150

Google Scholar

[6] Y.T. Zhu, J.Y. Huang, J. Gubicza, T. Unga´r, Y.M. Wang, E. Ma, R. Z. Valiev, J. Mater. Res., 18(2003) 1908-1917

Google Scholar

[7] X. Z. Liao, J. Y. Huang, Y. T. Zhu, F. Zhou, E. J. Lavernia, Phil. Mag. 83(2003)3065–3075

Google Scholar

[8] F. Dalla Torre, R. Lapovok, J. Sandlin, P.F. Thomson, C.H.J. Davies, E.V. Pereloma, Acta Materialia 52 (2004) 4819–4832

DOI: 10.1016/j.actamat.2004.06.040

Google Scholar

[9] C. Xu, M. Furukawa, Z. Horita, T. G. Langdon, Acta Mater 51 (2003) 6139–6149

Google Scholar

[10] G. Sha, Y.B. Wang, X.Z. Liao, Z.C. Duan, S.P. Ringer, T.G. Langdon, Mater Sci Eng, A 527 (2010) 4742–4749

Google Scholar

[11] J. Y. Huang, Y. T. Zhu. H. Jiang and T. C. Lowe, Acta mater. 49 (2001) 1497–1505

Google Scholar

[12] J. Gill Sevillano, P. Van Houtte, E. Aernoudt, Prog. Mater. Sci. 25 (1980) 69-412

Google Scholar

[14] F. J. Humphreys, M. Hatherly, Recrystallization and Related Annealing Phenomena, Elsevier, UK, (2004)

Google Scholar

[15] B. Bay, N. Hansen, D. A. Hughes , D. Kuhlmann-Wilsdorf, Acta Met. Mater, 40 (1992) 205-219

Google Scholar

[16] J. K. Solberg, H. J. McQueen, N. Ryum, E. Nes, Phil. Mag. A60 (1989) 447-471

Google Scholar

[17] D. A. Hughes, N. Hansen, Acta Mater 45 (1997) 3871-3886

Google Scholar

[18] Y. Iwahashi, J. Wang, Z. Horita, M . Nemoto, T. G. Langdon, Scripta Mater. 35 (1996) 143-146

Google Scholar

[19] R. Manna, N. K. Mukhopadhyay and G. V. S. Sastry, Metall. Mater. Trans. A, 39A (2008) 1525-1534

Google Scholar

[20] R. Manna, N. K. Mukhopadhyay and G.V. S. Sastry, Proc 30th Risø Intl Sym on Mater Sc:Nanostructured metals-Fundamentals to application, Risø National Laboratory, Denmark, 7-11th Sept, 2009, pp.245-252

Google Scholar