[1]
A. Molinari, G. Canova, S. Ahzi, A self-consistent approach of the large deformation polycrystal viscoplasticity, Acta Met. 35-12, (1987), pp.2983-2994.
DOI: 10.1016/0001-6160(87)90297-5
Google Scholar
[2]
U.F. Kocks, C.N. Tome, H.R. Wenk, Texture and anisotropy, Cambridge University Press, (1998).
Google Scholar
[3]
D.P. Mika, P.R. Dawson, Effects of grain interaction on deformation in polycrystals, Mat. Sci. Eng., A257, (1998), pp.62-76.
Google Scholar
[4]
H.J. Bunge, F. Wagner, P.I. Welch et P. Van-Houtte, A new way to include the grain shape in texture simulations with the Taylor model, J. Phys. Lett., 46, (1985), L1109-L1113.
DOI: 10.1051/jphyslet:0198500460230110900
Google Scholar
[5]
B. Raeisinia, C.W. Sinclair, W.J. Poole and C.N. Tomé, On the impact of grain size distribution on the plastic behavior of polycrystalline metals, Modeling Simul. Mater. Sci. Eng., 16, (2008), pp.1-15.
DOI: 10.1088/0965-0393/16/2/025001
Google Scholar
[6]
N. Nicaise, S. Berbenni, F. Wagner, M. Berveiller, X. Lemoine , Coupled effects of grain size distributions and crystallographic textures on the plastic behavior of IF steels, Int. J. of Plasticity, 27, (2011), pp.232-249.
DOI: 10.1016/j.ijplas.2010.05.001
Google Scholar
[7]
H.J. Bunge and R.A. Schwarzer, Orientation stereology – a new branch in texture research, Advanced Eng. Mat., 3, 1-2, (2001), pp.25-39.
DOI: 10.1002/1527-2648(200101)3:1/2<25::aid-adem25>3.0.co;2-8
Google Scholar
[8]
Electron Backscatter Diffraction in Materials Science, A.J. Schwartz, M. Kumar, B.L. Adams, D. P. Field Editors, 2nd edition, Springer, (2009).
Google Scholar
[9]
F. Wagner, N. Allain-Bonasso, S. Berbenni, Automatic correlation of grains from two different EBSD maps, Mat. Characterization, 62, (2011), pp.681-683.
DOI: 10.1016/j.matchar.2011.04.012
Google Scholar
[10]
B.S. El-Dasher, B.L. Adams, A.D. Rollett, Viewpoint: experimental recovery of geometrically necessary dislocation density in polycrystals, Scripta Mat. 48, (2003), pp.141-145.
DOI: 10.1016/s1359-6462(02)00340-8
Google Scholar
[11]
D.P. Field, P.B. Triverdi, S.I. Wright, M. Kumar, Analysis of local orientation gradients in deformed single crystals, Ultramicroscopy, 103, (2005), pp.33-39.
DOI: 10.1016/j.ultramic.2004.11.016
Google Scholar
[12]
S. Krog-Pedersen, J.R. Bowen, W. Pantleon, Quantitative characterization of the orientation spread within individual grains in copper after tensile deformation, Int. J. of Materials Research, 100-3, (2009), pp.433-438.
DOI: 10.3139/146.110032
Google Scholar
[13]
C.C. Merriman, D.P. Field, P. Trivedi, Orientation dependence of dislocation structure evolution during cold rolling of aluminium, Mat. Sci. Eng, A 494 (2008), pp.28-35.
DOI: 10.1016/j.msea.2007.10.090
Google Scholar
[14]
J. M. Pipard, N. Nicaise, S. Berbenni, O. Bouaziz, M. Berveiller. A new mean field micromechanical approach to capture grain size effects, Computational Materials Science, 45, (2009), p.604–610.
DOI: 10.1016/j.commatsci.2008.06.012
Google Scholar
[15]
S.K. Mishra, P. Pant, K. Narasimhan, A.D. Rollett, I. Samajdar, On the widths of orientation gradient zones adjacent to grain boundaries, Scripta Mat., 61, (2009), pp.273-276.
DOI: 10.1016/j.scriptamat.2009.03.062
Google Scholar
[16]
C. Perrin, S. Berbenni, H. Vehoff, M. Berveiller. Role of discrete intra-granular slip on lattice rotations in polycrystalline Ni: Experimental and micromechanical studies, Acta Materialia, 58, (2010), p.4639–4649.
DOI: 10.1016/j.actamat.2010.04.033
Google Scholar
[17]
A.D. Rollett, F. Wagner, N. Allain-Bonasso, D.P. Field, R.A. Lebensohn, Comparison of gradients in orientation and stress between experiment and simulation, this conference.
DOI: 10.4028/www.scientific.net/msf.702-703.463
Google Scholar