On the Impact of Thermo-Mechanical Processing on Texture and the Resultant Anisotropy of Aluminium Sheet

Abstract:

Article Preview

During the thermo-mechanical processing of aluminium sheet products in commercial production lines the material experiences a complex history of temperature, time and strain paths, which result in alternating cycles of deformation and recrystallization with the associated changes in microstructure and, especially, crystallographic texture. Thus, computer-based alloy and process development requires integration of models for simulat¬ing the evolution of microstructure, microchemistry and crystallographic texture into process models of the thermo-mechanical production of Al sheet. In the present paper the influence of texture on the anisotropic properties is explored for various industrially processed aluminium alloy sheets for packaging applications. Besides the use of experimentally measured sheet textures as an input for the anisotropy calculations, particular attention is given to the use of modelled textures. Here, results from a comprehensive through-process modelling of the texture evolution during the thermo-mechanical production of aluminium sheet are utilized. Eventually, this will enable us to predict the evolution of texture and the resulting properties along the entire process chain and hence to improve product quality of aluminium sheet products avoiding laborious and expensive plant trials.

Info:

Periodical:

Materials Science Forum (Volumes 702-703)

Edited by:

Asim Tewari, Satyam Suwas, Dinesh Srivastava, Indradev Samajdar and Arunansu Haldar

Pages:

427-434

DOI:

10.4028/www.scientific.net/MSF.702-703.427

Citation:

O. Engler "On the Impact of Thermo-Mechanical Processing on Texture and the Resultant Anisotropy of Aluminium Sheet", Materials Science Forum, Vols. 702-703, pp. 427-434, 2012

Online since:

December 2011

Authors:

Export:

Price:

$38.00

[1] J.C. Blade, J. Austr. Inst. Metals 12 (1967) 55.

[2] W.B. Hutchinson, A. Oscarsson, Å. Karlsson, Mater. Sci. Tech. 5 (1989) 1118.

[3] O. Engler, J. Hirsch: Mater. Sci. Eng. A452-453 (2007) 640.

[4] J. Hirsch and O. Engler: in Proc. 1st Joint Int. Conf. on Recrystallization and Grain Growth, eds. G. Gottstein, D.A. Molodov (Springer-Verlag, Berlin, 2001) p.731.

[5] O. Engler, L. Löchte and J. Hirsch: Acta Mater. 55 (2007) 5449.

[6] S.E. Naess: Z. Metallkd. 82 (1991) 259.

[7] O. Engler and J. Hirsch: Inter. J. Mater. Res. 100 (2009) 564.

[8] O. Engler and V. Randle: Introduction to Texture Analysis: Macrotexture, Microtexture, Orientation Mapping, 2nd ed., CRC Press, Boca Raton, (2010).

DOI: 10.1107/s0021889810014548

[9] H. J. Bunge: Texture Analysis in Materials Science, London, (1982).

[10] M. Crumbach, G. Pomana, P. Wagner and G. Gottstein: in Proc. 1st Joint Int. Conf. on Recrystallization and Grain Growth, eds. G. Gottstein, D.A. Molodov (Springer-Verlag, Berlin, 2001) p.1053.

[11] O. Engler, M. Crumbach and S. Li: Acta Mater. 53 (2005) 2241.

[12] O. Engler and S. Kalz: Mater. Sci. Eng. A373 (2004) 350.

[13] R.A. Lebensohn and C.N. Tomé: Acta Metall. Mater. 41 (1993) 2611.

[14] H.E. Vatne, K. Marthinsen, R. Ørsund and E. Nes: Metall. Trans. 27A (1996) 4133.

[15] J.A. Sæter, B. Forbord, H.E. Vatne and E. Nes: in Proc. ICAA6, eds. T. Sato et al. (JILM, Japan, 1998) p.113.

[16] H.E. Vatne, T. Furu, R. Ørsund and E. Nes: Acta Mater. 44 (1996) 4463.

DOI: 10.1016/1359-6454(96)00078-x

[17] O. Engler: Textures and Microstr. 32 (1999) 197.

In order to see related information, you need to Login.