[1]
V. Kain, S. S. Shinde and H. S. Gadiyar, Mechanism of improved corrosion resistance of type 304 L stainless steel, nitric acid grade, in nitric acid environments, J. Mater. Eng. Perf., 3 (1994) 699-705.
DOI: 10.1007/bf02818368
Google Scholar
[2]
R. D. Shaw, Corrosion prevention and control at sellafield nuclear fuel reprocessing plant, Br. Corros. J. 25 (1990) 97-107.
DOI: 10.1179/bcj.1990.25.2.97
Google Scholar
[3]
V. Kain, P. Sengupta, P. K. Deand and S. Banerjee, Case reviews on the effects of microstructures on the corrosion behavior of austenitic alloys for processing storage of nuclear waste, Metall. Mat. Trans. A, 36 A (2005) 1075-1084.
DOI: 10.1007/s11661-005-0201-5
Google Scholar
[4]
G. O. H. Whillock, B. F. Dunnet and M. Takeuchi, Techniques for measuring end grain corrosion resistance of austenitic stainless steels, Corrosion, 61( 2005) 58-67.
DOI: 10.5006/1.3278161
Google Scholar
[5]
V. Kain, S.S. Chouthai, and H.S. Gadiyar, Performance of AISI 304L stainless steel with exposed end grain in intergranular corrosion tests, Brit. Corr. J., 27 (1992) 59-65.
DOI: 10.1179/000705992798268819
Google Scholar
[6]
V. Kain and P. K. De, Controlling corrosion in the back end of fuel cycle using nitric acid grade stainless steel, Inter. J. Nuclear energy Sci. Technol., 1 (2005) 222-231.
DOI: 10.1504/ijnest.2005.007146
Google Scholar
[7]
J.Y. Jeng et al, Laser surface treatments to improve the intergranular corrosion resistance of 18/13/Nb and 304 in nitric acid, Corr. Sci., 35 (1993) 1289-1296.
DOI: 10.1016/0010-938x(93)90350-p
Google Scholar
[8]
J. Stewart and D. E. Williams, The initiation of pitting corrosion on austenitic stainless steel: on the role and importance of sulfide inclusion, Corr. Sci., 33 (1993) 457-474.
DOI: 10.1016/0010-938x(92)90074-d
Google Scholar
[9]
Q.Y. Pan et al, The improvement of localized corrosion resistance in sensitized stainless steel by laser surface remelting, Surf. Coat. Tech., 102 (1998) 245-255.
DOI: 10.1016/s0257-8972(98)00358-2
Google Scholar
[10]
J. S. Armijo, Intergranular corrosion of nonsensitized austenitic stainless steels, Corrosion, 24 (1968) 24-30.
DOI: 10.5006/0010-9312-24.1.24
Google Scholar
[11]
J. S. Armijo, Impurity adsorption and intergranular corrosion of austenitic stainless steel in boiling HNO3- K2Cr2O7 solution, Corros. Sci. 7 (1967) 143-150.
DOI: 10.1016/s0010-938x(67)80074-x
Google Scholar
[12]
ASTM designation A-262, Practice B in annual book of ASTM standards, ASTM Philadelphia, PA, (2005).
Google Scholar
[13]
Shagufta, Unpublished results from the doctoral thesis, Homi Bhabha National Institute, (2009).
Google Scholar
[14]
C. L. Briant and E. L. Hall, Heat to heat variability in the corrosion resistance and microstructure of low carbon AISI 316 nuclear grade stainless steel, 43 (1987) 525-533.
DOI: 10.5006/1.3583896
Google Scholar
[15]
Watanabe et al, Effect of neutron irradiation on transpassive corrosion behavior of austenitic stainless steel, Corrosion, 51 (1995) 651-659.
DOI: 10.5006/1.3293626
Google Scholar