The Synthesis of CNTs over Hydroxyapatite by CVD and the Preparation of CNTs/HA in Situ Composite

Article Preview

Abstract:

Carbon nanotubes (CNTs) over hydroxyapatite (HA) as catalyst carrier were synthesized successfully using transition metal by chemical vapor deposition (CVD). The influences of catalyst types on the synthesis of CNTs were investigated when using Fe, Co and Ni as transition metal catalyst respectively. The results showed that CNTs synthesized by Fe catalyst normally possess more ideal morphology and higher crystallinity than those by the other two. But the yield rates of CNTs synthesized by CVD were in the order of Ni>Fe>Co. On the basis of this, HA matrix composites reinforced by CNTs in-situ were prepared and their mechanical properties were studied preliminarily. This study supplies valuable information for controlling the property of CNTs/HA composite by the selection of catalyst.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 704-705)

Pages:

790-795

Citation:

Online since:

December 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. Iijima: Nature Vol. 354 (1991), p.56.

Google Scholar

[2] C.F. Cornwell and L.T. Wille: J. Chem. Phys. Vol. 109 (1998), p.763.

Google Scholar

[3] S. Berber, Y.K. Kwon and D. Tomanek: Phys. Rev. Lett. Vol. 84 (2000), p.4613.

Google Scholar

[4] A.K. Lau and D. Hui: Compos. Part B: Eng. Vol. 33 (2002), p.263.

Google Scholar

[5] Ph. Mauron, Ch. Emmenegger, A. Züttel, Ch. Nützenadel, P. Sudan and L. Schlapbach: Carbon Vol. 40 (2002), p.1339.

DOI: 10.1016/s0008-6223(01)00295-0

Google Scholar

[6] C.S. Goh, J. Wei, L.C. Lee and M. Gupta: Compos. Sci. Tech. Vol. 68 (2008), p.1432.

Google Scholar

[7] E.T. Thostenson, Z. Ren and T.W. Chou: Compos. Sci. Tech. Vol. 61 (2001), p.1899.

Google Scholar

[8] A.A. Mamedov, N.A. Kotov, M. Prato, D.M. Guldi, J.P. Wicksted and A. Hirsch: Nat. Mater. Vol. 1 (2002), p.190.

Google Scholar

[9] H.L. Ma, D.S. Su, A. Klein-Hoffmann, G.Q. Jin and X.Y. Guo: Carbon Vol. 44 (2006), p.2254.

Google Scholar

[10] L.L. Hench: J. Am. Ceram. Soc. Vol. 81 (1998), p.1705.

Google Scholar

[11] M. Jarcho: Clin. Orthop. Vol. 157 (1981), p.259.

Google Scholar

[12] D.C. Tancred, B.A. McCormack and A.J. Carr: Biomaterials Vol. 19 (1998), p.1735.

Google Scholar

[13] H.P. Li, N.Q. Zhao, Y. Liu, C.Y. Liang, C.S. Shi, X.W. Du and J.J. Li: Compos. Part A: Appl. Sci. Manuf. Vol. 39 (2008), p.1128.

Google Scholar

[14] H.P. Li, L.H. Wang, C.Y. Liang, Z.F. Wang and W.M. Zhao: Mater. Sci. Eng. B Vol. 166 (2010), p.19.

Google Scholar

[15] P.E. Nolan, M.J. Schabel, D.C. Lynch and A.H. Cutler: Carbon Vol. 33 (1995), p.79.

Google Scholar

[16] W.E. Alvarez, B. Kitiyanan, A. Borgna and D.E. Resasco: Carbon Vol. 39 (2001), p.547.

Google Scholar

[17] T. de los Arcos, F. Vonau, M.G. Garnier, V. Thommen, H. -G. Boyen, P. Oelhafen, M. Düggelin, D. Mathis and R. Guggenheim: Appl. Phys. Lett. Vol. 80 (2002), p.2383.

DOI: 10.1063/1.1465529

Google Scholar

[18] R.T.K. Baker: Carbon Vol. 27 (1989), p.315.

Google Scholar

[19] G.G. Tibbetts, M.G. Devour and E.J. Rodda: Carbon Vol. 25 (1987), p.367.

Google Scholar

[20] G.G. Tibbetts: J. Cryst. Growth Vol. 66 (1984), p.632.

Google Scholar

[21] C.J. Lee, J. Park and J. A. Yu: Chem. Phys. Lett. Vol. 360 (2002), p.250.

Google Scholar

[22] Y. Liu and M. Peng: J. Safety Environ. Vol. 1 (2001), p.9.

Google Scholar

[23] M. Wakamura, K. Kandori and T. Ishikawa: Colloids Surf. A: Physicochem. Eng. Asp. Vol. 164 (2000), p.297.

Google Scholar