Flow Behavior of Fe-3%Si Steel at High Temperatures and Strain Rates

Article Preview

Abstract:

Hot deformation behavior of Fe-3%Si steel within temperature range of 1073~1473K and strain rate range of 0.01~5s−1 was investigated by isothermal compression test using thermo-simulation method. Over the applied deformation conditions, steady state flow behavior was well described by the power law relationship with dislocation climb as the rate-controlling mechanism, and the high apparent activation energy can be attributed to the high yield stress. A modified Bergström model was proposed by introducing yield stress, and consequently the whole stress-strain curves can be accurately predicted.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 704-705)

Pages:

928-934

Citation:

Online since:

December 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R.G. Davies, Trans. TMS-AIME. 227 (1963), p.665.

Google Scholar

[2] C.R. Barrett, Trans. TMS-AIME. 239 (1967) , p.1726.

Google Scholar

[3] R.G. Stang, W.D. Nix, C.R. Barrett, Metall. Trans. 4 (1973) , p.1695.

Google Scholar

[4] J.L. Uvira, J.J. Jonas, Trans. TMS-AIME. 242 (1968) , p.1619.

Google Scholar

[5] J-P. A. Immarigeon, J.J. Jonas, Acta Metall. 22 (1974) , p.1235.

Google Scholar

[6] E. Inoue, T. Sakai, J. Japan Inst. Metals. 55 (1991) , p.286.

Google Scholar

[7] S. Akta, G.J. Richardson, C.M. Sellars, ISIJ Int. 45 (2005) , p.1666.

Google Scholar

[8] D.L. Baragar, J. Mech. Work. Technol. 14 (1987) , p.295.

Google Scholar

[9] A. Laasraoui, J.J. Jonas, Metall. Trans. 22 (1991) , p.1545.

Google Scholar

[10] I.P. Pinheiro, R. Barbosa, P.R. Cetlin, Mater. Sci. Eng. A457 (2007) , p.90.

Google Scholar

[11] C.M. Sellars, W.J. McTegart, Acta Metall. 14 (1966) , p.1136.

Google Scholar

[12] B. Mills, G.K. Walker, G.M. Leak, Phil. Mag. 12 (1965) , p.939.

Google Scholar

[13] W.S. Young and H. Mykura, Acta Metall. 13 (1965) , p.449.

Google Scholar

[14] A.M. Jorge Jr., W. Regone, O. Balancin, J. Mater. Process. Technol. 142 (2003) , p.415.

Google Scholar

[15] Y. Estrin, H. Mecking, Acta Metall. 32 (1984) , p.57.

Google Scholar

[16] J.M. Cabrera, A. Alomar, J.J. Jonas, J.M. Prado, Metall. Trans. 28 (1997) , p.2233.

Google Scholar

[17] C. Huang, E.B. Hawbolt, X. Chen, T.R. Meadowcroft, D.K. Matlock, Acta Mater. 49 (2001) , p.1445.

Google Scholar

[18] Y. Bergström, Mater. Sci. Eng. A5 (1969/70) , p.193.

Google Scholar

[19] A. Martínez-de-Guerenu, F. Arizti, M. Díaz-Fuentes, I. Gutiérrez, Acta Mater. 52 (2004) , p.3657.

Google Scholar

[20] Y. Atsuhiko, M. Hirofumi, O. Yasumitsu, I. Kametaro, Trans. ISIJ. 27 (1987) , p.425.

Google Scholar

[21] Y.C. Lin, M.S. Chen, J. Zhong. Mech. Res. Commun. 35 (2008) , p.142.

Google Scholar

[22] S. Serajzadeh, A. Karimi Taheri. Mater. Design. 23 (2002) , p.217.

Google Scholar