Characterization of a Biomedical Titanium Alloy Using Various Surface Modifications to Enhance its Corrosion Resistance and Biocompatibility

Article Preview

Abstract:

Ti6Al4V titanium alloy has been characterized for its prospective applications as an implant material. The surface treatments performed have brought about enhanced surface properties of these alloys and have produced corrosion resistant oxide films with increased bioactive properties. Characterization of the alloy surface has revealed the presence of a duplex oxide structure over the surface treated specimens, composed of an inner barrier layer and an outer porous layer. The inner barrier layer has imparted a high corrosion resistance to the alloy while the outer porous layer which is responsible for the increased roughness of the surface treated alloy specimens, has encouraged formation and deposition of apatite into the oxide pores and further resulted in an increase in cell adhesion over the alloy surface. Anodization and heat treatment procedures have proved advantageous to titanium alloys in terms of producing oxide films that can offer these alloys an improved biological performance.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 706-709)

Pages:

105-112

Citation:

Online since:

January 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. Lemons, R. Venugopalan, L. Lucas, in: Corrosion and Biodegradation; A. Von Recum, ed., Taylor Francis Inc: New York (1999), p.155.

Google Scholar

[2] S. Yu: Corrosion Resistance of Titanium Alloys, Corrosion: Fundamentals, Testing and Protection, Vol. 13A, ASM Handbook, ASM International (2003), pp.703-711.

DOI: 10.31399/asm.hb.v13a.a0003677

Google Scholar

[3] Abdullah M. Al-Mayouf, Amal A. Al-Swayih, Norah A Al-Mobarak, Abed S. Al-Jabab, Saudi Dental Journal Vol. 14, No. 3 (2002), 118-125.

DOI: 10.1016/j.matchemphys.2004.03.019

Google Scholar

[4] M. Sharma, A.V. Ramesh Kumar, N. Singh, N. Adya, B. Saluja: Journal of Materials Engineering and Performance Vol. 17, No. 5 (2008), 695-701.

Google Scholar

[5] K. Elagli, M. Traisnel, H.F. Hildebrand: Electrochimica Acta Vol. 38, No. 13 (1993), 1769-1774.

DOI: 10.1016/0013-4686(93)85075-a

Google Scholar

[6] M. L. Escudero, M.F. Lopez, J. Ruiz, M.C. Garcia-Alonso, H. Canhua: J of Biomed Mat Res 31 (1996), 313-317.

Google Scholar

[7] T. Eliades: The Intr J of Oral and Maxillofacial Implants 12 (1997), 621-627.

Google Scholar

[8] D. G. Kolman, J.R. Scully: J Electrochem Soc 143 (1996), 1847-1860.

Google Scholar

[9] J. Black, in: Biological Performance of Materials; Fundamentals of Biocompatibility; Marcel Decker Inc: New York (1992).

Google Scholar

[10] R. Bhola, S.M. Bhola, R. Ayers, B. Mishra, D.L. Olson, T. Ohno: J Oral Implantol, (2010) doi: 10. 1563/AAID-JOI-D-09-00075. 1 (in press).

Google Scholar

[11] C. Ohtsuki, H. Iida, S. Hayakawa, A. Osaka: J Biomed Mater Res 35 (1997) 39-47.

Google Scholar

[12] P. Li, C. Ohtsuki, T. Kokubo, K. Nankinshi, N. Soga, K.J. Groot de: Biomed Mater Res 68 (1994), 426-432.

Google Scholar

[13] P.S. Vanzillota, M.S. Sader, I.N. Bastos, G. de A. Soares: Dental Materials 22 (2006), 275-282.

Google Scholar

[14] C.C. Chusuei, D.W. Goodman: Anal Chem 71 (1999), 149-153.

Google Scholar

[15] B. Demri, D. Muster: J Mater Processing Technol 55 (1995), 311-314.

Google Scholar

[16] M.V. Regi, J.P. Pariente, I.I. Barba, A.J. Salinas: Chem Mater 12 (2000), 3770-3775.

Google Scholar