Equivalent CTOD Concept for Correction of CTOD Toughness for Constraint Loss in Steel Weld Components

Article Preview

Abstract:

This paper presents a new fracture assessment method, IST method developed as ISO 27306. The IST method implements an equivalent CTOD ratio, β, for the CTOD toughness correction for constraint loss in structural components. Using β, the standard fracture toughness specimen and structural components are linked at the same level of the Weibull stress. This paper extends the equivalent CTOD concept to weld components. Effects of the weld strength mismatch and residual stress on β are discussed. It is shown on the failure assessment diagram (FAD) that the CTOD toughness correction with β leads to accurate fracture assessments of weld panels, whereas the conventional procedure gives much conservative results.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 706-709)

Pages:

97-104

Citation:

Online since:

January 2012

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] FITNET: European Fitness-for-Service (FFS) Procedure, MK 8, Vol. 1 and Vol. 2 (2008).

Google Scholar

[2] F, Gutiérrez-Solana, S. Cicero: Engineering Failure Analysis, Vol. 16, No. 2 (2009), pp.559-577.

Google Scholar

[3] F. Minami, M. Ohata et al.: Engineering Fracture Mechanics, Vol. 73 (2006), p.1996-(2020).

Google Scholar

[4] F. M. Beremin: Metallurgical Transactions A, Vol. 14A (1983), pp.2277-2287.

Google Scholar

[5] S. Cicero, R.A. Ainsworth, F. Gutiérrez-Solana: Eng. Frac. Mech., Vol. 77 (2010), pp.1360-1374.

Google Scholar

[6] F. Minami, M. Ohata, Y. Yamashita: IIW Doc. X-1677-10 (2010).

Google Scholar

[7] F. Minami, T. Katou, et al., in: Proc. 18th OMAE, OMAE99/MAT-2130 (1999).

Google Scholar

[8] F. Minami, K. Arimochi: J. ASTM International, Vol. 1, No. 1 (2004), Paper ID JAI10615.

Google Scholar

[9] F. Minami, M. Ohata et al.: Welding in the World, Vol. 53, No. 5/6 (2009), pp.140-150.

Google Scholar

[10] F. Minami, Y. Takashima, M. Ohata, in: Proc. AWST, IIW, (2010), pp.439-452.

Google Scholar

[11] J. D. Harrison: Metal Construction, Vol. 12 (1980), pp.415-422.

Google Scholar

[12] B. A. Bilby, A. H. Cottrell, E. Smith, K. H. Swinden: Proc. Royal Society of London, Vol. A279 (1964), pp.1-9.

Google Scholar

[13] Y. Yamashita, F. Minami: Engineering Fracture Mechanics, Vol. 77 (2010), pp.2213-2232.

Google Scholar

[14] R. Gunnert; IIW Doc. X-288-62, (1962).

Google Scholar

[15] H. Tada, P. C. Paris, G. R. Irwin; The stress analysis of cracks handbook, 3rd ed. ASME, New York, NY, USA, (2000).

Google Scholar

[16] F. Minami, M. Ohata et al.: Pipeline Technology, Vol. 1 (1995), pp.441-461.

Google Scholar

[17] S. Slatcher: Veritas Research Technical Report, (1986).

Google Scholar

[18] Y. Yamashita, F. Minami: Engineering Fracture Mechanics, Vol. 77 (2010), pp.2419-2430.

Google Scholar