Dynamic Strain Aging Behavior of a Mg-Ce Alloy and its Implications for Extrusion

Article Preview

Abstract:

Compression tests were employed to characterize the DSA behaviour of Mg-Ce alloys. Samples were taken from cast billets and extruded bars of Mg-0.5 wt.% Ce. The DSA behavior was examined at temperatures from 150°C to 400°C at strain rates of 0.001/s to 1.5/s. A rate equation was fitted to the experimental results, which is employed to predict whether or not DSA will occur at the strain rates and temperatures involved in the formation of the RE texture component during extrusion.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 706-709)

Pages:

1193-1198

Citation:

Online since:

January 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] T.E. Leontis, Journal of Metals, Transactions AIME, November (1951) 987-993.

Google Scholar

[2] E.A. Ball, P.B. Prangnell, Scripta Metallurgica et Materialia, 31 (1994) 111-116.

DOI: 10.1016/0956-716x(94)90159-7

Google Scholar

[3] C.J. Ma, M. Liu, G.H. Wu, W.J. Ding, Y.P. Zhu, Materials Science and Technology, 20 (2004) 1661-1665.

Google Scholar

[4] J.W. Senn, S.R. Agnew., in: Proc. Magnesium Technology in the Global Age, COM, Montreal, Canada, (2006).

Google Scholar

[5] L.W.F. Mackenzie, M.O. Pekguleryuz, Scripta Materialia, 59 (2008) 665-668.

Google Scholar

[6] N. Stanford, D. Atwell, A. Beer, C. Davies, M.R. Barnett, Scripta Materialia, 59 (2008) 772-775.

DOI: 10.1016/j.scriptamat.2008.06.008

Google Scholar

[7] Y. Chino, K. Sassa, M. Mabuchi, Materials Science and Engineering: A, 513-514 (2009) 394-400.

Google Scholar

[8] B.L. Wu, Y.H. Zhao, X.H. Du, Y.D. Zhang, F. Wagner, C. Esling, Materials Science and Engineering: A, 527 (2010) 4334-4340.

Google Scholar

[9] N. Stanford, Materials Science and Engineering: A, 527 (2010) 2669-2677.

Google Scholar

[10] N. Stanford, Materials Science and Engineering: A, 528 (2010) 314-322.

Google Scholar

[11] N. Stanford, M.R. Barnett, Materials Science and Engineering: A, 496 (2008) 399-408.

Google Scholar

[12] M.R. Barnett, A. Sullivan, N. Stanford, N. Ross, A. Beer, Scripta Materialia, 63 (2010) 721-724.

DOI: 10.1016/j.scriptamat.2010.01.018

Google Scholar

[13] J. Bohlen, S. Yi, D. Letzig, K.U. Kainer, Materials Science and Engineering: A, 527 (2010) 7092-7098.

Google Scholar

[14] M. Huppmann, S. Gall, S. Müller, W. Reimers, Materials Science and Engineering: A, 528 (2010) 342-354.

Google Scholar

[15] A.O. Humphreys, D. Liu, M.R. Toroghinejad, E. Essadiqi, J.J. Jonas, Materials Science and Technology, 19 (2003) 709-714.

DOI: 10.1179/026708303225002848

Google Scholar

[16] L. Jiang, X. Quelennec, J.J. Jonas, R. Mishra, in: Magnesium Technology 2010, TMS, 2010, pp.343-346.

Google Scholar

[17] N. Stanford, I. Sabirov, G. Sha, A. La Fontaine, S. Ringer, M. Barnett, Metallurgical and Materials Transactions A, 41 (2010) 734-743.

DOI: 10.1007/s11661-009-0107-8

Google Scholar

[18] S.L. Couling, Acta Metallurgica, 7 (1959) 133-134.

Google Scholar

[19] L. Gao, R.S. Chen, E.H. Han, in: Magnesium Technology 2009, TMS, 2009, pp.269-272.

Google Scholar

[20] S.M. Zhu, J.F. Nie, Scripta Materialia, 50 (2004) 51-55.

Google Scholar

[21] L.L. Rokhlin, in: Magnesium Alloys Containing Rare Earth Metals, Taylor & Francis, (2003).

Google Scholar

[22] J.M. Robinson, M.P. Shaw, International Materials Reviews, 39 (1994) 113-122.

Google Scholar

[23] A.A. Luo, R.K. Mishra, A.K. Sachdev, in: Magnesium Technology 2010, TMS2010, Seattle, 2010, pp.313-318.

Google Scholar

[24] A.S. Keh, Y. Nakada, W.C. Leslie, Dislocation Dynamics, McGraw-Hill, New York, (1968).

Google Scholar

[25] A. K. Taheri, T.M. Maccagno, J.J. Jonas, ISIJ International, 35 (1995) 1532-1540.

Google Scholar

[26] T. Chandra, J. Jonas, Metallurgical and Materials Transactions B, 1 (1970) 2079-(2082).

Google Scholar