Ferrite Transformation Kinetics of Severely Hot-Deformed Austenite

Article Preview

Abstract:

The ferrite transformation kinetics of severely hot-deformed austenite has been studiedby considering ferrite nucleation from dislocation cell blocks inside austenite grains. The size ofdislocation cell blocks and ferrite grain size just after phase transformation are acknowledged to beinversely proportional to the square root of dislocation density. It is found that the ferrite nucleationrate in this area can reach the saturated state at a high temperature just under Ae3, and the ferritetransformation finishes within a very short time. The kinetics of ferrite volume fraction and theferrite grain growth after phase transformation for plain carbon (0.1%C, 0.2%Si, 1.0%Mn) steelhave been studied using a THERMECMASTER hot-compression testing machine. These modelscan be applied to the hot and warm forming processes of plain carbon steel to predict the ferritetransformation from severely deformed austenite.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 706-709)

Pages:

1562-1567

Citation:

Online since:

January 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. Umemoto, A. Hiramatsu, A. Moriya, T. Watanabe, S. Nanba, N. Nakajima, G. Anan and Y. Higo, ISIJ Int., 32(1992) 3. 306-315.

DOI: 10.2355/isijinternational.32.306

Google Scholar

[2] M. Suehiro, K. Sato, Y. Tsukao, H. Yada, T. Senuma and Y. Matsumura: Trans Iron Steel Inst. Jpn. 27 (1987) 439-445.

Google Scholar

[3] Z. Q. Sun, W. Y. Yang, J. J. Qi and A. M. Hu: Materials Science and Engineering A, 2002, vol. 334, pp.201-6.

Google Scholar

[4] Y. D. Huang, W. Y. Yang and Z. Q. Sun: Journal of Materials Processing Technology, 2002, vol. 5876, pp.1-7.

Google Scholar

[5] M. Niikura, M. Fujioka, Y. Adachi, A. Matsukura, T. Yokota and Y. Hagiwara: Journal of Materials Processing Technology, 2001, vol. 117, pp.341-6.

DOI: 10.1016/s0924-0136(01)00800-7

Google Scholar

[6] F. J. Humphreys, P. B. Prangnell and R. Priestner: Current Opinion in Solid State and Materials Science, 2001, vol. 5, pp.15-21.

DOI: 10.1016/s1359-0286(00)00020-6

Google Scholar

[7] S. C. Hong and K. S. Lee: Materials Science and Engineering A, 2002, vol. 323, pp.148-59.

Google Scholar

[8] D. H. Shin, I. Kim, J. Kim and K. T. Park: Acta Materialia, 2001, vol. 49, pp.1285-92.

Google Scholar

[9] D. B. Santos, R. K. Bruzszek, P. C. M. Rodrigues and E. V. Pereloma: Materials Science and Engineering A, 2003, vol. 346, pp.189-195.

Google Scholar

[10] K. Miyata, M. Wakita, S. Fukushima, M. Eto, T. Sasaki and T. Tomida: Proc. THERMEC-2006, Material Science Forum, Canada, 539-543, (2007), 4698-4703.

Google Scholar

[11] D. K. Wilsdorf: Metallurgical Transaction A, 1985, vol. 16A, pp.2091-108.

Google Scholar

[12] D. K. Wilsdorf: Metallurgical and Materials Transaction A, 1999, vol. 30A, pp.2391-401.

Google Scholar

[13] D. K. Wilsdorf: Philosophical Magazine A, 1999, vol. 79, pp. no. 4, pp.955-1008.

Google Scholar

[14] Raj, S.V. and Pharr, G.M.: A Compilation and Analysis of Data for the Stress Dependence of the Subgrain size, Mater. Sci. Eng., Vol. 81 (1986), 217-237.

DOI: 10.1016/0025-5416(86)90265-x

Google Scholar

[15] J. E. Bailey and P. B. Hirsch: Phil. Mag., 1960, vol. 5, pp.485-97.

Google Scholar

[16] T. Nisizawa: Tetsu-to-Hagane, 1984, vol. 15, pp.194-202.

Google Scholar

[17] J. Yanagimoto, K. Karhausen, A. J. Brand and R. Kopp: Transactions of the ASME, Journal of Manufacturing Science and Engineering, 1998, vol. 120, pp.316-22.

Google Scholar

[18] J. Yanagimoto and J. Liu: ISIJ International, 1999, vol. 39, no. 2, pp.171-5.

Google Scholar

[19] J. Askill: Tracer Diffusion Data for Metal, Alloys and Simple Oxides, Plenum Press, New York, 1970, pp.31-41.

Google Scholar

[20] K. T. Park and D. H. Shin: Materials Science and Engineering A, 2002, vol. 334, pp.79-86.

Google Scholar