Carbo-Nitride Precipitation in Tempered Martensite - Computer Simulation and Experiment

Article Preview

Abstract:

In the present work, the precipitation behavior of a V-microalloyed, quenched and tempered steel with 0.3wt % C is investigated experimentally and by computer simulation. The specimens are analyzed by means of transmission electron microscopy using selected area diffraction (SAD) and energy dispersive x-ray spectroscopy (EDX). The analysis is done on electropolished foils and on extraction replica. The numerical simulation is performed with the thermokinetic software package MatCalc, where the precipitation kinetics is examined for the experimentally applied thermo-mechanical cycles. Good agreement between experiment and simulation is obtained and the experimentally observed precipitate microstructure can be well explained on the basis of these simulations.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 706-709)

Pages:

1586-1591

Citation:

Online since:

January 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Speich, G.R. and Leslie, W.C.: Met. Trans. Vol. 3 (1972), p.1043.

Google Scholar

[2] Lee, W. -S. and Su, T. -T.: J. Mat. Proc. Techn. 87 (1999), p.198.

Google Scholar

[3] Ghosh, S.: Scripta Mat. 63 (2010), p.273.

Google Scholar

[4] Honeycombe, R.W.K.: Structure and Strength of Alloy Steels, Climax Molybdenum Company, London (1974).

Google Scholar

[5] Shaw, S.W.K. and Quarrell, A.G.: J. Iron Steel Inst. Vol. 85 (1957), p.10.

Google Scholar

[6] Airey, G.P., Hughes and T.A., Mehl, R.F.: Trans. AIME Vol. 242 (1968), p.1853.

Google Scholar

[7] Woodhead, J.H. and Quarrell, A.G.: J. Iron Steel Inst. Vol. 203 (1965), p.605.

Google Scholar

[8] Thomson, R.C.: Mat. Charact. 44 (2000), p.219.

Google Scholar

[9] Dyson, D.J. and Andrews, K.W.: J. Iron Steel Inst. Vol. 207 (1969), p.208.

Google Scholar

[10] Kampmann, R. and Wagner, R.: Acta Scripta Metall., Series, Decomposition of alloys: early stages (1984), p.91.

Google Scholar

[11] Robson, J.D.: Acta Mater. 52 (2004), p.4669.

Google Scholar

[12] Yang, J. and Enomoto, M.: ISIJ Vol. 45 (2005), p.1335.

Google Scholar

[13] Svoboda, J.; Fischer, F.D., Fratzl, P. and Kozeschnik, E.: Mater. Sci. Eng. A, 385 (2004), p.166.

Google Scholar

[14] Kozeschnik, E.; Svoboda, J.; Fratzl, P. and Fischer, F.D.: Mater. Sci. Eng. A. 385 (2004), p.57.

Google Scholar

[15] Kozeschnik, E.; Svoboda, J. and Fischer, F.D.: CALPHAD 28 (2005), p.379.

Google Scholar

[17] Kozeschnik, E.; Svoboda, J.; Radis, R. and Fischer, F.D.: Modelling Simul. Mater. Sci. Eng. 18 (2010) 015011.

DOI: 10.1088/0965-0393/18/1/015011

Google Scholar

[18] Kozeschnik, E.; Svoboda, J. and Fischer, F.D.: Mat. Sci. Eng. A, 441 (2006), p.68.

Google Scholar

[19] B. Sonderegger and E. Kozeschnik, Metall. Mater. Trans., 40A (2009) 499-510.

Google Scholar

[20] B. Sonderegger and E. Kozeschnik, Scripta Mater. 60 (2009) 635-638.

Google Scholar