Local Residual Stress Distribution at the Tooth Root Surface of a Broached Steel Component

Article Preview

Abstract:

Broaching is an important technique for creating tooth structures in mechanical components. In the present work, the effects of the broaching process on the material state in the near surface region at the root of the tooth was analyzed. The studies were carried out on broached plates made from case hardening steel SAE 5120. The cutting speed and machining condition (cooling lubricant, dry machining) were varied. During broaching with a TiAlN coated tool the cutting forces were monitored. Subsequently, the local residual stresses at the root of the tooth were determined using X-ray diffraction. Further, surface roughness and micro hardness measurements as well as microstructure analysis complement the results. The results indicate that cutting forces have a high influence on the development of the residual stress state at the machined surface whereas no significant effect on changes in surface hardness and microstructure could be observed. Dry cutting with relatively high cutting speeds (≥ 30m/min) result in low cutting forces and hence in high tensile residual stresses in broaching direction.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 706-709)

Pages:

1731-1736

Citation:

Online since:

January 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] D. Klein, M. Seifert, K. -D. Thoben: Taking the distortion of component parts along a manufacturing chain into consideration during planning, Mat. -wiss. u. Werkstofftech. 40 No. 5-6, pp.361-367, (2009).

DOI: 10.1002/mawe.200900458

Google Scholar

[2] E. Brinksmeier; Th. Lübben; U. Fritsching; C. Cui.; R. Rentsch; J. Sölter: Distortion minimization of disks for gear manufacture. International Journal of Machine Tools and Manufacture 51 (2011), pp.331-338.

DOI: 10.1016/j.ijmachtools.2010.12.005

Google Scholar

[3] J. Epp; T. Hirsch: Residual Stress State Characterization of Machined Components by X-ray Diffraction and Multiparameter Micromagnetic Methods. Experimental Mechanics 50 (2010) 1, pp.195-204.

DOI: 10.1007/s11340-009-9231-z

Google Scholar

[4] W. König: Fertigungsverfahren, Band 1, Drehen, Fräsen, Bohren, VDI Verlag Düsseldorf (1984).

Google Scholar

[5] H. Meier, R. Rilli, V. Schulze: Nass- und Trockenräumen von 16MnCr5, Proceedings of Graduate School 1483 and CCMSE, 25. -26. Feb. (2010).

Google Scholar

[6] E. Macherauch, P. Müller: Das sin²ψ-Verfahren der röntgenographischen Spannungsmessung, Z. angew. Physik, 13 (1961), p.305–312.

Google Scholar

[7] U. Wolfstieg: Die Symmetrisierung unsymmetrischer Interferenzlinien mit Hilfe von Spezialblenden, HTM 31 (1976), pp.23-26.

Google Scholar

[8] B. Scholtes, H. -U. Baron, H. Behnken, B. Eigemann, J. Gibmeier, T. Hirsch, W. Pfeifer: Röntgenographische Ermittlung von Spannung – Ermittlung und Bewertung homogener Spannungszustände in kristallinen, mikroskopisch isotropen Werkstoffen, Verfahrensbeschreibung der AWT e.V., Fachausschuss FA 13 (2000).

Google Scholar

[9] O. Kienzle, H. Victor: Einfluss der Wärmebehandlung auf die Hauptschnittkraft beim Drehen, Stahl und Eisen, Nr. 9 (1954).

Google Scholar

[10] R. Opferkuch: Die Werkzeugbeanspruchung beim Räumen, PhD-Thesis University Karlsruhe (TH), (1981).

DOI: 10.1007/978-3-642-81663-5_4

Google Scholar

[11] B. Scholtes, E. Macherauch: Auswirkungen mechanischer Randschichtverformung auf das Festigkeitsverhalten metallischer Werkstoffe, Z. für Metallkunde 77 (1986), pp.322-337.

Google Scholar