[1]
E Y Kevin, D N Ronald, N S David. Effects of Rhenium Addition on The Temporal Evolution of Nanostructure and Chemistry of A Model Ni-Cr-Al Superalloy. I: Exeperimental Observations. Acta Mater. Vol. 55 (2007), pp.1145-1157.
DOI: 10.1016/j.actamat.2006.08.027
Google Scholar
[2]
S Tin, L Zhang, G Brewster, M K Miller. Investigation of Oxidation Characteristics and Atomic Partitioning in Platinum and Ruthenium Bearing Single-Crystal Ni-Based Superalloys. Met. Mat. Trans. Vol. 37A (2006), pp.1389-1396.
DOI: 10.1007/s11661-006-0083-1
Google Scholar
[3]
R C Reed, A C Yeh, S Tin, S S Babu, M K Miller. Identification of the Partitioning Characteristics of Ruthenium in Single Crystal Superalloys Using Atom Probe Tomography. Scr. Mater. Vol. 51 (2004), pp.327-331.
DOI: 10.1016/j.scriptamat.2004.04.019
Google Scholar
[4]
Claudia Schulze, Monika Feller-Kniepmeier. Phase Compositions and Lattice Misfit in CMSX-11B Partition Coefficients in Single Crystal Nickel Based Superalloys. Scr. Mater. Vol. 44 (2001), pp.731-736.
DOI: 10.1016/s1359-6462(00)00670-9
Google Scholar
[5]
E H Copland, N S Jacobson, and F J Ritzert: Computational Thermodynamic study to Predict Complex Phase Equilibria in the Nickel-Base Superalloy René N6 (NASA/TM, U.S. 2001).
Google Scholar
[6]
Information on http: /www. msm. cam. ac. uk/map/data/neural/lattmisfit-b. html.
Google Scholar
[7]
Z Q Chen, Y F Han, Z G Zhong, P Y Wei, M G Yan. Prediction of Larson Miller Curve of Nickel Base Single Crystal Superalloys. Chin. J. Aeronaut (1999), pp.35-37.
Google Scholar
[8]
U Brückner, A Epishin, T Link, K Dressel. The Influence of The Dendritic Structure on The g/g¢-Lattice Misfit in The Single-Crystal Nickel-Base Superalloy CMSX-4. Mater. Sci. Eng. Vol. 247A (1998), pp.23-31.
DOI: 10.1016/s0921-5093(97)00856-3
Google Scholar
[9]
K Fujinami, H Suematsu, M Karppinen, H Yamauchi, U Hemmersmeier, M Feller-Kniepmeier. Element Distribution in The Macro and Microstructure of Nickel Base Superalloy CMSX-4. Mater. Sci. Eng. Vol. 248A (1998), pp.87-97.
DOI: 10.1016/s0921-5093(98)00516-4
Google Scholar
[10]
K S O'Hara, W S Walston, E W Ross, R Darolia, and W Chester, U.S. Patent: 5, 482, 789. (1996).
Google Scholar
[11]
N Wanderka, U Glatzel. Chemical Composition Measurements of A Nickel-Based Superalloy by Atom Probe Field in Microscropy. Mater. Sci. Eng. Vol. 203A (1995), pp.69-74.
DOI: 10.1016/0921-5093(95)09825-9
Google Scholar
[12]
T M Pollock, A S Argon. Directional Coarsening in Nickel-Base Single Crystals with High Volume Fractions of Coherent Precipitates. Acta Met. Mater. Vol. 42 (1994), pp.1859-1874.
DOI: 10.1016/0956-7151(94)90011-6
Google Scholar
[13]
U Glatzel: Microstructure and Internal Strains of Undeformed and Creep Deformed Samples of a Nickel-Based Superalloy (Verlag Dr. Koster, Germany 1994).
Google Scholar
[14]
D Blavette, P Caron, T Khan. An Atom Probe Investigation of the Role of Rhenium Additions in Improving Creep Resistance of Ni-Base Superalloys. Scr. Met. Vol. 20 (1986), pp.1395-1400.
DOI: 10.1016/0036-9748(86)90103-1
Google Scholar
[15]
M V Nathal, L J Ebert. The Influence of Cobalt, Tantalum, and Tungsten on the Elevated Temperature Mechanical Properties of Single Crystal Nickel-Base Superalloys. Met. Trans. Vol. 16A (1985), pp.1863-1870.
DOI: 10.1007/bf02670373
Google Scholar
[16]
F H Harf. The Substitution of Nickel for Cobalt in Hot Isostatically Pressed Powder Metallurgy UDIMET 700 Alloys. Met. Trans. Vol. 16A (1985), pp.993-1003.
DOI: 10.1007/bf02811669
Google Scholar
[17]
R L Dreshfield and J F Wallace. The Gamma-Gamma Prime Region of the Ni-Al-Cr-Ti-W-Mo System at 850℃. Met. Trans. Vol. 5A (1974), pp.71-78.
DOI: 10.1007/bf02642929
Google Scholar
[18]
Z F Peng, Determination of g¢ Phase Lattice Parameter Based on the Chemical Concentration of its Sub-lattices in Ni-base Superalloys. Met. Mat. Trans. Vol. 35A (2004), pp.2171-2172.
DOI: 10.1007/s11661-004-0165-x
Google Scholar
[19]
P Caron, T Khan. Improvement of Creep Strength in a Nickel-Base Single-Crystal Superalloy by Heat Treatment. Mater. Sci. Eng. Vol. 61 (1983), pp.173-182.
DOI: 10.1016/0025-5416(83)90199-4
Google Scholar
[20]
H A Kuhn, H Biermann, T Ungár and H Mughrabi, An X-ray Study of Creep- Deformation Induced Changes of the Lattice Mismatch in the γ' Hardened Monocrystalline Ni-base Superalloy SRR 99. Acta Met. Mater. Vol. 39 (1991), pp.2783-2794.
DOI: 10.1016/0956-7151(91)90095-i
Google Scholar
[21]
M V Nathal, L J Ebert. The Influence of Cobalt, Tantalum, and Tungsten on the Microstructure of Single Crystal Nickel-Base Superalloys. Met. Trans. Vol. 16A (1985), pp.1849-1862.
DOI: 10.1007/bf02670372
Google Scholar
[22]
J Bursík. Quantitative analysis of atomic configurations of two-phase Ni-based alloys generated by Monte Carlo simulation. J. Alloys & Compds Vol. 378 (2004), pp.66-70.
DOI: 10.1016/j.jallcom.2003.11.167
Google Scholar
[23]
A P Ofori, C J Rossouw, C J Humphreys. Determining the site occupancy of Ru in the L12 phase of a Ni-base superalloy using ALCHEMI. Acta Mater. Vol. 53 (2005), pp.97-110.
DOI: 10.1016/j.actamat.2004.09.007
Google Scholar
[24]
S Tin, L Zhang, A P Ofori, M K Miller. Atomic Partitioning of Platinum and Ruthenium in Advanced Single Crystal Ni-based Superalloys. Mater. Sci. Forum Vol. 546-549 (2007), pp.1187-1194.
DOI: 10.4028/www.scientific.net/msf.546-549.1187
Google Scholar