A Brief Introduction to Alloy Phase Chemistry Determination under EPMA/SEM-EDS Conditions and its Applications

Article Preview

Abstract:

A so called multiphase separation method (MPSM) is proposed to quantitatively separate precipitated phases from their surrounding matrix phase in chemistry for bulk alloy/steel samples under EPMA/SEM-EDS measurement conditions. Applied examples to comparisons of the results through the MPSM with the values either cited or obtained via other analytical means relevant are indicative of the feasibility, accuracy as well as applicability of the MPSM, which deal with chemistry, amount, lattice parameter, elemental partitioning, atomic-site occupancy and stability of precipitated phases of either superalloy or heat-resistant steel samples analyzed. Successful applications of the MPSM not only show a significant improvement for difficulties in accurate quantification in phase chemistry under the EPMA/SEM-EDS measurement conditions but also provide with a useful and helpful tool to determine some other important physical quantities in alloys and steels, which make it possible to quantitatively and more widely evaluate structure-property relationships of the materials investigated through analyzing their bulk samples under EPMA/SEM-EDS measurement conditions.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 706-709)

Pages:

2450-2455

Citation:

Online since:

January 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] E Y Kevin, D N Ronald, N S David. Effects of Rhenium Addition on The Temporal Evolution of Nanostructure and Chemistry of A Model Ni-Cr-Al Superalloy. I: Exeperimental Observations. Acta Mater. Vol. 55 (2007), pp.1145-1157.

DOI: 10.1016/j.actamat.2006.08.027

Google Scholar

[2] S Tin, L Zhang, G Brewster, M K Miller. Investigation of Oxidation Characteristics and Atomic Partitioning in Platinum and Ruthenium Bearing Single-Crystal Ni-Based Superalloys. Met. Mat. Trans. Vol. 37A (2006), pp.1389-1396.

DOI: 10.1007/s11661-006-0083-1

Google Scholar

[3] R C Reed, A C Yeh, S Tin, S S Babu, M K Miller. Identification of the Partitioning Characteristics of Ruthenium in Single Crystal Superalloys Using Atom Probe Tomography. Scr. Mater. Vol. 51 (2004), pp.327-331.

DOI: 10.1016/j.scriptamat.2004.04.019

Google Scholar

[4] Claudia Schulze, Monika Feller-Kniepmeier. Phase Compositions and Lattice Misfit in CMSX-11B Partition Coefficients in Single Crystal Nickel Based Superalloys. Scr. Mater. Vol. 44 (2001), pp.731-736.

DOI: 10.1016/s1359-6462(00)00670-9

Google Scholar

[5] E H Copland, N S Jacobson, and F J Ritzert: Computational Thermodynamic study to Predict Complex Phase Equilibria in the Nickel-Base Superalloy René N6 (NASA/TM, U.S. 2001).

Google Scholar

[6] Information on http: /www. msm. cam. ac. uk/map/data/neural/lattmisfit-b. html.

Google Scholar

[7] Z Q Chen, Y F Han, Z G Zhong, P Y Wei, M G Yan. Prediction of Larson Miller Curve of Nickel Base Single Crystal Superalloys. Chin. J. Aeronaut (1999), pp.35-37.

Google Scholar

[8] U Brückner, A Epishin, T Link, K Dressel. The Influence of The Dendritic Structure on The g/g¢-Lattice Misfit in The Single-Crystal Nickel-Base Superalloy CMSX-4. Mater. Sci. Eng. Vol. 247A (1998), pp.23-31.

DOI: 10.1016/s0921-5093(97)00856-3

Google Scholar

[9] K Fujinami, H Suematsu, M Karppinen, H Yamauchi, U Hemmersmeier, M Feller-Kniepmeier. Element Distribution in The Macro and Microstructure of Nickel Base Superalloy CMSX-4. Mater. Sci. Eng. Vol. 248A (1998), pp.87-97.

DOI: 10.1016/s0921-5093(98)00516-4

Google Scholar

[10] K S O'Hara, W S Walston, E W Ross, R Darolia, and W Chester, U.S. Patent: 5, 482, 789. (1996).

Google Scholar

[11] N Wanderka, U Glatzel. Chemical Composition Measurements of A Nickel-Based Superalloy by Atom Probe Field in Microscropy. Mater. Sci. Eng. Vol. 203A (1995), pp.69-74.

DOI: 10.1016/0921-5093(95)09825-9

Google Scholar

[12] T M Pollock, A S Argon. Directional Coarsening in Nickel-Base Single Crystals with High Volume Fractions of Coherent Precipitates. Acta Met. Mater. Vol. 42 (1994), pp.1859-1874.

DOI: 10.1016/0956-7151(94)90011-6

Google Scholar

[13] U Glatzel: Microstructure and Internal Strains of Undeformed and Creep Deformed Samples of a Nickel-Based Superalloy (Verlag Dr. Koster, Germany 1994).

Google Scholar

[14] D Blavette, P Caron, T Khan. An Atom Probe Investigation of the Role of Rhenium Additions in Improving Creep Resistance of Ni-Base Superalloys. Scr. Met. Vol. 20 (1986), pp.1395-1400.

DOI: 10.1016/0036-9748(86)90103-1

Google Scholar

[15] M V Nathal, L J Ebert. The Influence of Cobalt, Tantalum, and Tungsten on the Elevated Temperature Mechanical Properties of Single Crystal Nickel-Base Superalloys. Met. Trans. Vol. 16A (1985), pp.1863-1870.

DOI: 10.1007/bf02670373

Google Scholar

[16] F H Harf. The Substitution of Nickel for Cobalt in Hot Isostatically Pressed Powder Metallurgy UDIMET 700 Alloys. Met. Trans. Vol. 16A (1985), pp.993-1003.

DOI: 10.1007/bf02811669

Google Scholar

[17] R L Dreshfield and J F Wallace. The Gamma-Gamma Prime Region of the Ni-Al-Cr-Ti-W-Mo System at 850℃. Met. Trans. Vol. 5A (1974), pp.71-78.

DOI: 10.1007/bf02642929

Google Scholar

[18] Z F Peng, Determination of g¢ Phase Lattice Parameter Based on the Chemical Concentration of its Sub-lattices in Ni-base Superalloys. Met. Mat. Trans. Vol. 35A (2004), pp.2171-2172.

DOI: 10.1007/s11661-004-0165-x

Google Scholar

[19] P Caron, T Khan. Improvement of Creep Strength in a Nickel-Base Single-Crystal Superalloy by Heat Treatment. Mater. Sci. Eng. Vol. 61 (1983), pp.173-182.

DOI: 10.1016/0025-5416(83)90199-4

Google Scholar

[20] H A Kuhn, H Biermann, T Ungár and H Mughrabi, An X-ray Study of Creep- Deformation Induced Changes of the Lattice Mismatch in the γ' Hardened Monocrystalline Ni-base Superalloy SRR 99. Acta Met. Mater. Vol. 39 (1991), pp.2783-2794.

DOI: 10.1016/0956-7151(91)90095-i

Google Scholar

[21] M V Nathal, L J Ebert. The Influence of Cobalt, Tantalum, and Tungsten on the Microstructure of Single Crystal Nickel-Base Superalloys. Met. Trans. Vol. 16A (1985), pp.1849-1862.

DOI: 10.1007/bf02670372

Google Scholar

[22] J Bursík. Quantitative analysis of atomic configurations of two-phase Ni-based alloys generated by Monte Carlo simulation. J. Alloys & Compds Vol. 378 (2004), pp.66-70.

DOI: 10.1016/j.jallcom.2003.11.167

Google Scholar

[23] A P Ofori, C J Rossouw, C J Humphreys. Determining the site occupancy of Ru in the L12 phase of a Ni-base superalloy using ALCHEMI. Acta Mater. Vol. 53 (2005), pp.97-110.

DOI: 10.1016/j.actamat.2004.09.007

Google Scholar

[24] S Tin, L Zhang, A P Ofori, M K Miller. Atomic Partitioning of Platinum and Ruthenium in Advanced Single Crystal Ni-based Superalloys. Mater. Sci. Forum Vol. 546-549 (2007), pp.1187-1194.

DOI: 10.4028/www.scientific.net/msf.546-549.1187

Google Scholar