[1]
Witte F, et al. In vitro and in vivo corrosion measurements of magnesium alloys, Biomaterials 27(2006) 1013-1018.
Google Scholar
[2]
Wang HX, Guan SK, Wang X, Ren CX, Wang LG, In vitro degradation and mechanical integrity of Mg–Zn–Ca alloy coated with Ca-deficient hydroxyapatite by the pulse electrodeposition process, Acta Biomaterialia 6(2010) 1743-1748.
DOI: 10.1016/j.actbio.2009.12.009
Google Scholar
[3]
Kannan MB, Raman RKS, In vitro degradation and mechanical integrity of calcium-containing magnesium alloys in modified-simulated body fluid, Biomaterials 29(2008) 2306-(2014).
DOI: 10.1016/j.biomaterials.2008.02.003
Google Scholar
[4]
Li Z, Gu X, Lou S, Zheng Y, The development of binary Mg–Ca alloys for use as biodegradable materials within bone, Biomaterials 29(2008) 1329-1344.
DOI: 10.1016/j.biomaterials.2007.12.021
Google Scholar
[5]
Song G, Atrens A, Corrosion mechanisms of magnesium alloys, Adv Eng Mater 1(1999) 11–33.
Google Scholar
[6]
M. Bobby Kannan, R.K. Singh Raman, In vitro degradation and mechanical integrity of calcium-containing, Biomaterials 29(2008) 2306–2314.
DOI: 10.1016/j.biomaterials.2008.02.003
Google Scholar
[7]
Valiev RZ, Islamgaliev RK, Alexandrov IV, Bulk nanostructured materials from severe plastic deformation, Prog Mater Sci 45(2000) 103-189.
DOI: 10.1016/s0079-6425(99)00007-9
Google Scholar
[8]
Zhilyaev AP, Langdon TG, Using high-pressure torsion for metal processing: Fundamentals and applications, Prog Mater Sci 53(2008) 893–979.
DOI: 10.1016/j.pmatsci.2008.03.002
Google Scholar
[9]
Balyanov A, et al, Corrosion resistance of ultra fine-grained Ti, Scr. Mater. 51(2004) 225–229.
DOI: 10.1016/j.scriptamat.2004.04.011
Google Scholar
[10]
Hiroyuki Miyamoto, Kohei Harada, Takuro Mimaki, Alexei Vinogradov, Satoshi Hashimoto, Corrosion of ultra-fine grained copper fabricated by equal-channel angular pressing, Corros. Sci. 50(2008) 1215-1220.
DOI: 10.1016/j.corsci.2008.01.024
Google Scholar
[11]
Čížek J, et al, Microstructure and thermal stability of ultra fine grained Mg-based alloys prepared by high-pressure torsion, Mater. Sci. Eng. A 462(2007) 121–126.
DOI: 10.1016/j.msea.2006.01.177
Google Scholar
[12]
Faghihi S, Azaria F, Zhilyaev AP, Szpunar JA, Vali H, Tabrizian M, Cellular and molecular interactions between MC3T3-E1 pre-osteoblasts and nanostructured titanium produced by high-pressure torsion, Biomaterials 28(2007) 3887–3895.
DOI: 10.1016/j.biomaterials.2007.05.010
Google Scholar
[13]
Zhilyaev AP, Nurislamova GV, Kim B-K, Baró MD, Szpunar JA, Langdon TG, Experimental parameters influencing grain refinement and microstructural evolution during high-pressure torsion, Acta Mater. 51(2003) 753–765.
DOI: 10.1016/s1359-6454(02)00466-4
Google Scholar
[14]
Tadashi Kokubo, Hiroaki Takadama, How useful is SBF in predicting in vivo bone bioactivity?. Biomaterials 27(2006) 2907–2915.
DOI: 10.1016/j.biomaterials.2006.01.017
Google Scholar
[15]
Wen Z, Wu C, Dai C, Yang F, Corrosion behaviors of Mg and its alloys with different Al contents in a modified simulated body fluid, J. Alloys Comp. 488(2009) 392–399.
DOI: 10.1016/j.jallcom.2009.08.147
Google Scholar
[16]
Stern M, Geary AL. Electrochemical Polarization: I. A Theoretical Analysis of the Shape of Polarization Curves. J Electrochem Soc 104(1957) 56-63.
DOI: 10.1149/1.2428473
Google Scholar
[17]
Song YW, Shan DY, Chen RS, Han EH, Effect of second phases on the corrosion behavior of wrought Mg-Zn-Y-Zr alloy, Corros. Sci. 52 (2010) 1830–1837.
DOI: 10.1016/j.corsci.2010.02.017
Google Scholar
[18]
Brunner JG, May J, Höppel HW, Göken M, Virtanen S, Localized corrosion of ultrafine-grained Al–Mg model alloys, Electrochimica Acta 55(2010) 1966-(1970).
DOI: 10.1016/j.electacta.2009.11.016
Google Scholar
[19]
Yu B, Woo P, Erb U, Corrosion behaviour of nanocrystalline copper foil in sodium hydroxide solution, Scr. Mater. 56(2007) 353-356.
DOI: 10.1016/j.scriptamat.2006.11.007
Google Scholar