Effect of Heat Treatments of Bioactive Nacre on HAp Formation in SBF

Article Preview

Abstract:

Formation of hydroxyapatite (HAp) in simulated body fluid (SBF) on heated nacre has been examined. Nacre is known as composite layer of aragonite platelets and organic materials. Nacre was obtained from the shell of Akoya pearl oyster after removing its prismatic layer. The nacre was heated up to 300°C in air and then soaked in SBF. Nacre heated at 300°C lost iridescent color and became brittle, implying that organic materials which plays a role as glue between aragonite platelets mostly disappeared by heating at 300°C. Formation of HAp particles on nacre in SBF was easier than that on pure Ti. Maximum formation rate of HAp particles was obtained on the nacre heated at 200°C. The amount of HAp particles formed on the nacre heated at 300°C is the smallest. The organic materials in nacre play a critical role for HAp formation on nacre in SBF.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 706-709)

Pages:

526-531

Citation:

Online since:

January 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] P. Westbroek, F. Marin, Nature 392 (1998) 861-2.

Google Scholar

[2] G. Atlan, O. Delattre, S. Berland, A. LeFaou, G. Nabias, D. Cot, E. Lopez, Biomaterials 20 (1999) 1017-1022.

Google Scholar

[3] S. Berland, O. Delattre, S. Borzeix, Y. Catonne, E. Lopez, Biomaterials 26 (2005) 2767–2773.

DOI: 10.1016/j.biomaterials.2004.07.019

Google Scholar

[4] D. Duplat, M. Gallet, S. Berland, A. Marie, L. Dubost, M. Rousseau, S. Kamel, C. Milet, M. Brazier, E. Lopez, L. Bédouet, Biomaterials 28 (2007) 4769-78.

DOI: 10.1016/j.biomaterials.2007.07.036

Google Scholar

[5] M. Fritz, A.M. Belcher, M. Radmacher, D.A. Walters, P.K. Hansma, G.D. Stucky, D.E. Morse, S. Mann, Nature 371 (1994) 49-51.

DOI: 10.1038/371049a0

Google Scholar

[6] A.P. Jackson, J.F.V. Vincent, R.M. Turner, J. Mater. Sci. 25 (1990) 3173-3178.

Google Scholar

[7] Y. Levi-Kalisman, G. Falini, L. Addadi, S. Weiner, J. Struct. Biol. 135 (2001) 8-17.

Google Scholar

[8] H. Nakahara, G. Bevelander, M. Kakei, Venus Jpn. J. Malacol. 41 (1982) 33-46.

Google Scholar

[9] R. Wang, J. Mater. Sci. 39 (2004) 4961-4964.

Google Scholar

[10] S. Yoshioka, Y. Kitano, Geochem. J. 19 (1985) 245-249.

Google Scholar

[11] Z. Huang, X. Li, Mater. Sci. Eng. C 29 (2009) 1803-1807.

Google Scholar

[12] X. Bourrat, L. Francke, E. Lopez, M. Rousseau, P. Stempflé, M. Angellier, P. Albéric, CrystEngComm 9 (2007) 1205.

DOI: 10.1039/b709388h

Google Scholar

[13] X. Li, JOM 59 (2007) 71-74.

Google Scholar

[14] X. Li, W. -C. Chang, Y.J. Chao, R. Wang, M. Chang, Nano Lett. 4 (2004) 613-617.

Google Scholar

[15] X. Li, Z. -H. Xu, R. Wang, Nano Lett. 6 (2006) 2301-4.

Google Scholar

[16] X. Bourrat, M. Rousseau, E. Lopez, P. Stempflé, BioMin 2005, 9th International Symposium on Biomineralization (2005) 6 - 9.

Google Scholar

[17] K. Gries, R. Kröger, C. Kübel, M. Fritz, A. Rosenauer, Acta Biomater. 5 (2009) 3038-44.

Google Scholar

[18] S. Weiner, W. Traub, S.B. Parker, Philos. T. R. Soc. B 304 (1984) 425-434.

Google Scholar

[19] F. Nudelman, H.H. Chen, H. a Goldberg, S. Weiner, L. Addadi, Faraday Discuss. 136 (2007) 9.

Google Scholar

[20] T. Furuhashi, C. Schwarzinger, I. Miksik, M. Smrz, A. Beran, Comp. Biochem. Phys. B 154 (2009) 351-71.

Google Scholar

[21] M. Frédéric, L. Gilles, in:, B. Edmund (Ed. ), Handbook Of Biomineralization, Wiley-VCH, 2007, pp.273-290.

Google Scholar

[22] Y. Dauphin, J. Biol. Chem. 278 (2003) 15168-77.

Google Scholar