[1]
J. Trachtenbrodt: Poliethylen in der Knie – Endoprothetik. Kunstoffe 82 No. 5 (1992).
Google Scholar
[2]
K.A. Mann, D.L. Bartel, T.M. Wright, A.H. Burstein: Coulomb frictional interfaces in modeling: A more realistic model. Journal of Biomechanics No. 28 (1995), 1067-1079.
DOI: 10.1016/0021-9290(94)00158-z
Google Scholar
[3]
A.N. Natali, E.R. Meroi: A review of the biomechanical properties of bone as material. Journal of Biomedical Engineering No. 11 (1989), 266-276.
DOI: 10.1016/0141-5425(89)90058-7
Google Scholar
[4]
A. Szarek, J. Szyprowski, Strength differences of some acrylic cements, Engineering of Biomaterials Vol. 45 (2005), 24-29.
Google Scholar
[5]
A. Szarek: Hip Joint Replacement in Biomechanical and Clinical Approach. Rusnauckniga, (2010), Belgorod.
Google Scholar
[6]
M. Nordin, V.H. Frankel: Basic biomechanics of the muscoskeletal system. Lea & Fabiger (1989).
Google Scholar
[7]
G. Bergmann: Loading of the Hip Joint, Free University of Berlin, (2001).
Google Scholar
[8]
G. Krzesiński, T. Zagrajek: Modelowanie własności mechanicznych kości (The modeling of bone mechanical properties), Biology of Sport Vol. 17, (1997), Suppl. 8, 238-243.
Google Scholar
[9]
T. Akahori, M. Niinomi: Fracture characteristic of fatigued Ti-6Al. -4V ELI as an implant material, Materials Science and Engineering Vol. A2 (1998), 43-49.
DOI: 10.1016/s0921-5093(97)00807-1
Google Scholar
[10]
J. Marciniak: Biomateriały w chirurgii kostnej (Biomaterials in bone chirurgic), Gliwice 1992. cemented total hip replacements: a more realistic model, Journal of Biomechanics No. 28 (9) (1995), 1067-1078.
DOI: 10.1016/0021-9290(94)00158-z
Google Scholar
[11]
D.T. Reilly, A.H. Burstein: The mechanical properties of cortical bone, The Journal of Bone and Joint Surgery (1974), Vol. 56, 82-86.
Google Scholar
[12]
P. Postawa, A. Szarek: Analysis of changes in bone cement damping factor and its effect on bone load. Journal of Achievements in Materiale and Manufacturing Engineering. Vol. 23, (2007), 35-38.
Google Scholar