Corrosion Behavior and Surface Analysis of Melt-Spun Mg-Based Metallic Glass in Physiological Saline Solution

Abstract:

Article Preview

The developed Mg-based metallic glass shows great potential as implants in biomedical applications instead of crystalline Mg alloys, which may possesses acceptable corrosion properties. In this study, corrosion behaviors of melt-spun amorphous Mg67Zn28Ca5 ribbons were investigated in physiological saline solution. Electrochemical testing and hydrogen evolution rate indicated that the glassy ribbons obtained at lower wheel speed were more noble with smaller corrosion current, and possessed a comparatively lower corrosion rate in physiological saline solution. Surface morphology analysis revealed that glassy Mg67Zn28Ca5 ribbons exhibited a strong susceptibility to localized pitting corrosion. A Zn-rich passive layer was formed on the surfaces of the glassy ribbons, indicating that Zn was an effective alloying element to enhance the corrosion resistance of amorphous Mg67Zn28Ca5 alloys.

Info:

Periodical:

Materials Science Forum (Volumes 706-709)

Main Theme:

Edited by:

T. Chandra, M. Ionescu and D. Mantovani

Pages:

606-611

Citation:

Y. S. Wang et al., "Corrosion Behavior and Surface Analysis of Melt-Spun Mg-Based Metallic Glass in Physiological Saline Solution", Materials Science Forum, Vols. 706-709, pp. 606-611, 2012

Online since:

January 2012

Export:

Price:

$38.00

[1] H. Hermawan, D. Dube, D. Mantovani, Development in metallic biodegradable stents, Acta Biomater. 6 (2010) 1693-1697.

DOI: https://doi.org/10.1016/j.actbio.2009.10.006

[2] M. Peuster, P. Beerbaum, F.W. Bach, H. Hauser, Are resorbable implants about to become a reality? Cardiol. Young. 16 (2006) 107-116.

DOI: https://doi.org/10.1017/s1047951106000011

[3] B. Zberg, P.J. Uggowitzer, J.F. Loffler. MgZnCa glasses without clinically observable hydrogen evolution for biodegradable implants, Nat. Mater. 8 (2009) 887-891.

DOI: https://doi.org/10.1038/nmat2542

[4] M.P. Staiger, A.M. Pietak, J. Huadmai, G. Dias, Magnesium and its alloys as orthopedic biomaterials: a review. Biomaterials, 27 (2006) 1728-1734.

DOI: https://doi.org/10.1016/j.biomaterials.2005.10.003

[5] L.P. Xu, G.N. Yu, E. Zhang, F. Pan, K. Yang. In vivo corrosion behavior of Mg-Mn-Zn alloy for bone implant application. J. Biomed. Mater. Res. 83A (2007) 703-711.

DOI: https://doi.org/10.1002/jbm.a.31273

[6] R. Erbel et al., Temporary scaffolding of coronary arteries with bioabsorbable magnesium stents: a prospective, non-randomised multicentre trial. Lancet, 369 (2007) 1869-75.

DOI: https://doi.org/10.1016/s0140-6736(07)60853-8

[7] G.L. Song. Control of biodegradation of biocompatible magnesium alloys. Corros. Sci. 49 (2007) 1696-1701.

[8] W.H. Jiang, F. Jiang, B.A. Green, F.X. Liu, P.K. Liaw, H. Choo, K.Q. Qiu. Electrochemical corrosion behavior of a Zr-based bulk-metallic glass, Appl. Phys. Lett. 91 (2007) 041904.

DOI: https://doi.org/10.1063/1.2762282

[9] Y.B. Wang, H.F. Li, Y. Cheng, S.C. Wei, Y.F. Zheng. Corrosion performances of a nickel-free Fe-based bulk metallic glass in simulated body fluids. Electrochem. Commun. 11 (2009) 2187-2190.

DOI: https://doi.org/10.1016/j.elecom.2009.09.027

[10] X.N. Gu, Y.F. Zheng, S.P. Zhong, T.F. Xi, J.Q. Wang, W.H. Wang. Corrosion of, and cellular responses to Mg-Zn-Ca bulk metallic glasses. Biomaterials, 31 (2010) 1093-1103.

DOI: https://doi.org/10.1016/j.biomaterials.2009.11.015

[11] F.X. Qin, G.T. Bae, Z.H. Dan, H. Lee, N.J. Kim. Corrosion behavior of the Mg65Cu25Gd10 bulk amorphous alloys. Mat. Sci. Eng. A, 449-451 (2007) 636-639.

DOI: https://doi.org/10.1016/j.msea.2006.02.387

[12] H.B. Yao, Y. Li, A.T.S. Wee. Corrosion behavior of melt-spun Mg65Ni20Nd15 and Mg65Cu25Y10 metallic glasses. Electrochim. Acta, 48 (2003) 2641-2650.

DOI: https://doi.org/10.1016/s0013-4686(03)00310-4

[13] B.D. Ratner, A.S. Hoffman, F.J. Schoen, J.E. Lemons. Biomaterials Science: an Introducitn to Materials in Medicine. Elsevier Academic Press, San Diego, California, (2004).

[14] J.W. Chang, X.W. Guo, P.H. Fu, L.M. Peng, W.J. Ding. Effect of heat treatment on corrosion and electrochemical behavior of Mg-3Nd-0. 2Zn-0. 4Zr (wt%) alloy. Electrochim. Acta, 52 (2007) 3160-3167.

DOI: https://doi.org/10.1016/j.electacta.2006.09.069

[15] H. Habazaki, S.Q. Ding, A. Kawashima, K. Asami, K. Hashimoto, A. Inoue, T. Masumoto. The anodic behavior of amorphous Ni-19P alloys in different amorphous states. Corros. Sci, 29 (1989) 1319-1328.

DOI: https://doi.org/10.1002/chin.199007024

[16] F.F. Marzo, A.R. Pierna, M.M. Vega. Effect of irreversible structural relaxation on the electrochemical behavior of Fe78-xSi13B9Cr(x=3, 4, 7) amorphous alloys. J. Non-cryst. Solids, 329 (2003) 108-114.

DOI: https://doi.org/10.1016/j.jnoncrysol.2003.08.022

[17] Y. Song, D. Shan, R. Chen, F. Zhang, E.H. Han. Biodegradable behaviors of AZ31 magnesium alloy in simulated body fluid. Mat Sci Eng C-Biomin, 29 (2009) 1039-1045.

DOI: https://doi.org/10.1016/j.msec.2008.08.026

[18] G.L. Song, A. Atrens. Understanding magnesium corrosion. Adv. Eng. Mater, 5 (2003) 837-858.

[19] M.L. Morrison, R.A. Buchanan, A. Peker, P.K. Liaw, J.A. Horton. Electrochemical behavior of a Ti-based bulk metallic glass. J. Non-cryst Solids, 353 (2007) 2115-2124.

DOI: https://doi.org/10.1016/j.jnoncrysol.2007.03.012

[20] R. Schennach, T. Grady, D.G. Naugle, H. McWhinney, C.C. Hays, W.L. Johnson, D.L. Cocke. Electrochemical characterization and surface analysis of bulk amorphous alloys in aqueous solutions at different pH. J. Vac. Sci, Technol. A, 19 (2001).

DOI: https://doi.org/10.1116/1.1380719

[21] Z.M. Wang, J. Zhang, J.Q. Wang. Pit growth in a Ni-Nb metallic glass compared with its crystalline counterpart. Intermetallics, 18 (2010) 2077-(2082).

DOI: https://doi.org/10.1016/j.intermet.2010.06.010

Fetching data from Crossref.
This may take some time to load.