Materials Science Forum
Vols. 715-716
Vols. 715-716
Materials Science Forum
Vol. 714
Vol. 714
Materials Science Forum
Vol. 713
Vol. 713
Materials Science Forum
Vol. 712
Vol. 712
Materials Science Forum
Vol. 711
Vol. 711
Materials Science Forum
Vol. 710
Vol. 710
Materials Science Forum
Vols. 706-709
Vols. 706-709
Materials Science Forum
Vols. 704-705
Vols. 704-705
Materials Science Forum
Vols. 702-703
Vols. 702-703
Materials Science Forum
Vol. 701
Vol. 701
Materials Science Forum
Vol. 700
Vol. 700
Materials Science Forum
Vol. 699
Vol. 699
Materials Science Forum
Vols. 697-698
Vols. 697-698
Materials Science Forum Vols. 706-709
Paper Title Page
Abstract: As a numerical tool for examining the microstructural fracture behavior in the smart and intelligent materials, a finite element method with the interface element was developed and the applicability of this method was studied through the serial computations using virtual polycrystalline models. As the results assuming the influence of grain orientation on the grain boundary, it was found that the anisotropic mechanical property of grain boundary (interaction between opening and slipping deformations) would be a dominant factor of the fracture process. Also, by employing the theory of crystal plasticity for the mechanical property of grain, it was revealed that the stress concentrations caused by both the mismatch between neighbor grains and the slipping at grain boundary could be demonstrated by using this method.
2002
Abstract: In this experiment two kinds of 410L stainless steel, i.e., the first one is prepared by the I/M process and the second one is prepared by MIM process were used, and their corrosion behavior under stress in deionized water and the aqueous solution of 0.01kmol·m-3HCl+1.72mol·m-3MgCl2 (pH=2.33) has been investigated by Electrochemical Impedance Spectroscopy (hereafter shortened as EIS) under Slow Strain Rate Tensile (hereafter shortened as SSRT) test. The charge transfer resistance (Rct) of the I/M specimen is larger than that of the MIM specimen irrespective of under stress or non-stress, which means that the I/M specimen has the better corrosion resistance than the MIM specimen in the 0.01kmol·m-3HCl+1.72mol·m-3MgCl2 (pH=2.33) solution. It was also confirmed from the fracture surface observation that hydrogen embrittlement occurred on the MIM specimen in the aqueous solution of 0.01kmol·m-3HCl+1.72mol·m-3MgCl2 (pH=2.33). This result would be confirmed to be due to the existing impurities and defects in the MIM specimen.
2008
Abstract: NiTi shape memory alloys (NiTi-SMA or Nitinol) have successful application thanksto their excellent and unique material properties. However, considering the practical applicationto human body, elution from the toxic Ni ions into human body should be taken into account.Many researchers have dealt with the issue and already proposed various surface treatmenttechniques including the surface oxidation and ion implantation.Our focus is to enhance thefunctionality of Nitinol. We have been developing the smart sensor utilizing metal-containingDiamond-like Carbon (Me-DLC) thin coating. Emphasis can be made on the unique propertiesof Me-DLC deposited on the Nitinol. Strong adhesive strength has been obtained in Me-DLCand Nitinol system. In this paper, we propose a novel Me-DLC coating with multifunctionalityof the suppression of the toxic Ni ions. The paper includes deposition technique, performanceof the coating concerning adhesive strength and suppression of the toxic Ni ions, and finallymultilayered structure aiming at multifunctionality.
2014
Abstract: The properties of SMA (Shape Memory Alloys, smart materials) are associated to a first order phase transition named martensitic transformation that occurs between metastable phases: austenite and martensite. At higher temperature phase or at lower stress the austenite is the metastable phase. The martensite appears at lower temperature phase or higher stresses. The hysteresis of the transformation permits different levels of applications, i.e., in their use as a damper. Two types of applications can be considered in damping of structures in Civil Engineering. The first one is related to diminishing the damage induced by earthquakes. The second one is a reduction of oscillation amplitude associate to an increase of the lifetime for the stayed cables in bridges. Different fundamental behavior of the SMA needs to be guaranteed in each case.
2020
Abstract: The training treatments in the shape memory alloy are known as useful method to improve the shape memory effect. In our previous study, it was shown that the training treatments can also improve both the damping capacity and the hardness of the Fe–Mn alloy. In this study, training effects on damping capacity in solution treated Mn-22.5mass%Cu-5.08mass%Ni-1.96mass%Fe alloy have been investigated. As training treatments, the thermal training (only thermal cycling) and the thermo-mechanical training (thermal cycling with deformation) are carried out. Internal friction was measured at room temperature (R. T.) using a free-decay method. Although training effect cannot be found for the samples trained at higher annealing temperature (600 °C and 700 °C), damping capacity of the alloy is improved by thermal training annealed at 400 °C and 500 °C. The trade-off between the damping capacity and mechanical properties can be overcome by the training at lower temperature.
2026
Abstract: Pseudoelasticity of Fe3Ga polycrystals doped with third elements (Ti, V, Cr, Mn, Co, Ni, Si, Ge) was examined. Fe3Ga polycrystals with the appropriate heat treatment were found to exhibit large pseudoelasticity based on reversible motion of dislocation dragging an antiphase boundary (APB). In Fe3Ga crystals with the D03 superlattice structure, paired 1/4<111> superpartial dislocations mainly moved dragging the next-nearest-neighbor APB during loading. During unloading, the APB pulled back the superpartial dislocations resulting in the pseudoelasticity. The D03 ordered phase also developed in Fe3Ga polycrystals with 2at% of the third elements. However, the strain recovery of Fe3Ga polycrystals depended strongly on third element. Fe3Ga polycrystals doped with 2at% of Mn, Cr and Co demonstrated large pseudoelasticity. In contrast, the other doped elements decreased the amount of strain recovery. The frictional stress of 1/4<111> superpartial dislocations and the back stress due to the APB, acting on the dislocations, changed by doping the third elements, which was closely related to the pseudoelastic behavior. It is also noted that there was a good correlation between the APB back stress and the ordering temperature from the B2 to D03 phase.
2032
Abstract: In the past decade, new steels have been developed for the automotive industry in the framework of environmental requirements. Among them, high manganese austenitic steels combining exceptional properties of strength and ductility are particularly promising. These exceptional properties stem from a fully austenitic structure at room temperature and a twinning deformation mode in addition to the classical mechanism of dislocation gliding, known as the TWinning Induced Plasticity (TWIP) effect. In this study, the cracking resistance of the Fe22Mn0.6C TWIP steel was investigated in relation to the liquid metal embrittlement (LME) phenomenon. Indeed, liquid zinc has been found to have an embrittling effect on such steels. Electro-galvanized specimens were subjected to hot tensile tests using Gleeble® thermo-mechanical simulator. The influence of different parameters such as temperature and strain rate on embrittlement was studied. The results show that this steel can be embrittled by liquid zinc within a limited range of temperature depending on strain rate. A critical stress for cracking has been defined for each embrittlement condition.
2041
Abstract: In the current study, a novel approach was employed to produce a unique combination of ultrafine ferrite grains and low temperature bainite in a low carbon steel with a high hardenability. The thermomechanical route included warm deformation of supercooled austenite followed by reheating in the ferrite region and then cooling to bainitic transformation regime (i.e. 400-250°C). The resultant microstructure was ultrafine ferrite grains (i.e. <4μm) and very fine bainite consisting of bainitic ferrite laths with high dislocation density and retained austenite films. This microstructure offers a unique combination of ultimate tensile strength and elongation due to the presence of ductile fine ferrite grains and hard low temperature bainitic ferrite laths with retained austenite films. The microstructural characteristics of bainite were studied using optical microscopy in conjunction with scanning and transmission electron microscopy techniques.
2047
Abstract: The high-manganese austenitic steels are an answer for new demands of automotive industry concerning the safety of passengers by the use of materials absorbing high values of energy during collisions. The chemical compositions of two high-manganese austenitic steels containing various Al and Si concentrations were developed. Additionally, the steels were microalloyed by Nb and Ti in order to control the grain growth under hot-working conditions. The influence of hot-working conditions on a recrystallization behaviour was investigated. Flow stresses during the multistage compression test were measured using the Gleeble 3800 thermo-mechanical simulator. To describe the hot-working behaviour, the steel was compressed to the various amount of deformation (4x0.29, 4x0.23 and 4x0.19). The microstructure evolution in successive stages of deformation was determined in metallographic investigations using light microscopy. The flow stresses are much higher in comparison with austenitic Cr-Ni and Cr-Mn steels and slightly higher compared to Fe-(15-25) Mn alloys. Making use of dynamic and metadynamic recrystallization, it is possible to refine the microstructure and to decrease the flow stress during the last deformation at 850°C. Applying the true strains of 0.23 and 0.19 requires the microstructure refinement by static recrystallization. The obtained microstructure – hot-working relationships can be useful in the determination of powerful parameters of hot-rolling and to design a rolling schedule for high-manganese steel sheets with fine-grained austenitic structures.
2053
Abstract: Hot induction bending is a process applied to tubes produced for the oil and gas industry, where bending temperatures above Ac3 can be reached. The base metal is submitted to two thermal cycles, one during welding, generating the heat affected zone (HAZ), and another during bending when this HAZ is reheated. Also, after the bending process is completed, heat treatment is required, which represents a third thermal cycle. The objective of the present work was to compare the effect of two different induction bending process conditions on the longitudinal SAW weld of two API 5L X80 steel pipes of 20” diameter, 19mm thickness, Pcm of 0.17% and Σ NbTiV of 0.11%. The pipes, were produced by the UOE process from a steel plate obtained by thermomechanical processing without accelerating cooling. The bending parameters applied were 105 kW power at 2500 Hz frequency and 205 kW at 500Hz A major microstructural decomposition of the welded joint occurred for the 205 kW / 500Hz condition due to the higher heat input in function of the doubled power input during bending. These microstructural changes led to an inversion of the microhardness profile from the internal pass to the external pass as compared to the welded joint before bending. Tensile strength values obtained after bending were above the minimum limit (621MPa) established for grade X80 by the API 5L norm, showing that these microstructural changes promoted by the bending process do not compromise the structural integrity of the joint.
2059