Materials Science Forum
Vols. 715-716
Vols. 715-716
Materials Science Forum
Vol. 714
Vol. 714
Materials Science Forum
Vol. 713
Vol. 713
Materials Science Forum
Vol. 712
Vol. 712
Materials Science Forum
Vol. 711
Vol. 711
Materials Science Forum
Vol. 710
Vol. 710
Materials Science Forum
Vols. 706-709
Vols. 706-709
Materials Science Forum
Vols. 704-705
Vols. 704-705
Materials Science Forum
Vols. 702-703
Vols. 702-703
Materials Science Forum
Vol. 701
Vol. 701
Materials Science Forum
Vol. 700
Vol. 700
Materials Science Forum
Vol. 699
Vol. 699
Materials Science Forum
Vols. 697-698
Vols. 697-698
Materials Science Forum Vols. 706-709
Paper Title Page
Abstract: The texture evolution of the pure iron sample after the surface mechanical attrition treatment (SMAT) was investigated by means of electron backscattering and X-ray diffraction (XRD) analysis. Experimental observations indicated that four sections along depth were formed in the pure iron sample during the SMAT, i.e., nanostructured regime in the surface layer, submicro-sized, micro-sized and plastic deformed regime. Compared to the microstructure of sample, texture analysis was performed. It can be found that the <110>//ND fiber texture is the prominent texture. A strong orientation of (110)[11] along the <110>//ND fiber was formed in the plastic deformed regime, and as the depth from the top surface decreases, <110> //ND fiber texture intensity increases. The maximum intensity was reached in the micro-sized regime, and then it start to reduce. In the nanostructured regime, <110> //ND fiber texture nearly disappear.
2663
Abstract: High manganese TRIP/TWIP steels with different Mn contents were subjected to uniaxial deformation. The textures, misorientations and orientation relationships were determined in austenite, HCP/BCC martensites and ferrite. It is observed that the mechanically stabilized austenite possesses mainly stable deformation texture, the intermediate HCP martensite possesses mainly unstable tilted basal texture and the BCC martensite possesses stable deformation texture which was actually mixed with transformation texture. Special misorientations due to either the inherence from austenite or due to twins or variant selection were main components in each phase. K-S relationship became much scattered due to slip-induced misorientations both in martensite and in parent austenite.
2668
Abstract: In the present work, we summarized two calculation methods to determine some specific crystallographic elements based on electron diffraction orientation measurements by SEM/EBSD or TEM. The first one is to determine the twin type and twinning elements of crystal twins based on the minimum shear criterion, using the experimentally determined twinning plane for Type I twin and compound twin or twinning direction for Type II twin as initial input. The method is valid for any crystal structure. The second one is one to determine the plane indices of the faceted interfaces where the orientation relationships (ORs) between the adjacent crystals are reproducible. The method requires one prepared sample surface instead of two perpendicular surfaces. These methods are expected to facilitate the related microstructural characterizations.
2674
Abstract: The effects of the magnetic field intensity on microstructure and crystallographic orientation of proeutectoid ferrite in Fe-0.36C alloy have been investigated. Results show that the amount of the Widmänstatten ferrite decreases with the increase of the magnetic field intensity. The transformed proeutectoid ferrite tends to elongate and align along the field direction due to the magnetic dipolar interaction. This tendency is more pronounced when the field intensity increases. Moreover, the enhancement of the <001> fiber component along the traverse field direction by magnetic field is obvious when the field intensity is stronger.
2680
Abstract: The features present in 3D structure have geometric properties that fall into two broad categories: topological and metric. Metric properties are generally the more familiar; these include volume, surface area, line length and curvature. Equally or even more important in some applications are the topological properties of features. The two principal topological properties are number per unit volume and connectivity. In the present study, a change in morphology of pearlite and dual phase microstructures was examined from differential geometry and topology viewpoint. 3D images of eutectoid pearlite and dual phase steels were obtained by reconstructing serial sectioning images. Their metric and topological features were evaluated using The Euler Poincare formula and The Gauss-Bonnet Theorem. In addition, newly developed fully-automated serial sectioning 3D microscope “Genus_3D” will be also introduced.
2687
Abstract: The study about the influence of intercritical annealing time on a cold rolled 0.1%C – 4.6%Mn (wt.%) steel was performed. The tensile tests show an interesting balance between strength and ductility especially after 7 hours annealing at 670°C. A part of this good result can be explained by the presence of rather high fraction of metastable austenite at room temperature. On the other hand a very complex microstructure combining lath-like and polygonal features was observed making the interpretation complicated.
2693
Abstract: Two novel methods of obtaining microduplex structures, ferrite plus spherical carbides, in ultrahigh strength steels (~2000MPa) are introduced. One is through an adequate deformation just below the austenite-ferrite equilibrium transformation temperature (i.e. Ae3 temperature, ~983K) followed by water quenching. The adequate deformation directly leads to the formation of a (ferrite plus spherical carbides) microduplex structure. The microstructure evolution during the deformation includes pearlite transformation, cementite spheroidization and ferrite recrystallization. The other is through an adequate deformation above Ae3 temperature (~1003K) followed by water quenching to produce martensite firstly and then obtain a (ferrite plus spherical carbides) microduplex structure during warm deformation of martensite. Microstructural analysis on the microduplex structure shows that submicron carbides are located at ferrite grain boundaries while nanometer ones are dispersed inside ferrite grains. This kind of carbide distribution may suppress the coarsening of ferrite grains and form a dynamic equilibrium of ferrite grain size on a specific deformation condition. The strain rate sensitivity of the (ferrite plus spherical carbides) microduplex structures is about 0.4 at 973K and strain rate of 10-4s-1.
2699
Abstract: Dynamic recrystallization (DRX) is one of the most important mechanisms for microstructure evolution during deformation of various metals and alloys. So-called discontinuous DRX usually develops in structural materials with low to medium stacking fault energy during hot working. The local migration, i.e. bulging, of grain boundaries leads to the formation of recrystallization nuclei, which then grow out consuming work-hardened surroundings. The cyclic character of nucleation and growth of new grains during deformation results in a dynamically constant average grain size. The dynamic grain size is sensitively dependent on temperature and strain rate and can be expressed by a power law function of flow stress with a grain size exponent of about-0.7 under conditions of hot working. Recent studies on DRX phenomenon suggest that a decrease in deformation temperature changes the structural mechanism for new grain formation. As a result, the grain size exponent in the relationship between the dynamic grain size and flow stress approaches about-0.25 under warm working conditions.
2704
Abstract: Thermo-mechanical control processing (TMCP) is a powerful tool for development of high strength low alloy (HSLA) steels. The understanding of the effect of process parameters on the microstructure of these steels is a key aspect for the optimization of their mechanical properties. The influence of the rolling temperatures and the cooling conditions on the texture, strength and toughness of HSLA steel was investigated. Two stage controlled rolling (roughing and finishing) was carried out on a laboratory rolling mill. Four different compositions were rolled by maintaining same roughing conditions but varying the process parameters of the finish rolling, namely, start finish rolling temperature (SFRT), finish rolling and cooling temperatures. Subsequent to rolling, two different cooling routes were used, namely, air-cooling (AC) and accelerated water cooling (ACC). For the ACC route, the plates were subsequently heat treated to simulate coiling. The microstructure and texture obtained before and after each TMCP schedule were characterized quantifying the phases, grain size and texture by means of EBSD and XRD and associated with the mechanical properties. It was found that SFRT has a strong impact on both strength and toughness if the material was air-cooled. Plates rolled at lower temperature showed better strength and toughness than ones rolled at high temperature in both air-cooling and ACC due to grain refinement. However, for the material that was processed through ACC and coiling simulation, the strength increased without any substantial effect on the toughness. These results provide an interesting insight on the industrial processing of HSLA steels.
2710
Abstract: Thermo-mechanical processing of a new family of low carbon, low manganese, titanium added steels was studied under a variety of simulated conditions. In this paper emphasis is placed on developing a better understanding of the effect of Ti and N on the microstructural development and mechanical properties of these new steel types. Also, the behavior of precipitates during hot deformation was examined. The results indicated that steel with a Ti/N ratio lower than the stoichiometric value provide best mechanical properties.
2716