Wetting Characteristics of Sn-0.7Cu Lead-Free Solder Alloy on Copper Substrates

Article Preview

Abstract:

In the present work, the effect of surface texture on wetting characteristics of lead-free solder Sn-0.7Cu on copper substrates have been investigated at 298°C. The wetting tests were carried out using FTA 200 (First Ten Angstrom) dynamic contact angle analyzer. The surface texture of copper substrate significantly affected the wetting properties of Sn-0.7Cu solder alloy. Contact angles of about 30° were obtained on Cu substrate having smooth surface texture (Ra = 0.0155µm). On other hand contact angles on rough copper surface texture (Ra = 1.1194µm) were reduced to 20°. The contact angles decreased with increasing surface texture of Cu substrate. For rough Cu substrate, it seems that the solder atoms dissolve into the substrate in the time period of 200-600s.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

569-574

Citation:

Online since:

January 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] H. H. Manko, Solder and Soldering, 3rd ed., McGraw-Hill, Inc., New York, (1979)

Google Scholar

[2] G. Kumar, K.N. Prabhu, J ASTM Int. 7(5) (2010) JAI103055

DOI: 10.1520/JAI103055

Google Scholar

[3] J.S. Hwang, Implementing lead-free electronics. McGraw-Hill, (2005)

Google Scholar

[4] N.C. Lee, Adv Microelectron. (1999) pp.29-36

Google Scholar

[5] F.A. Mario, M. He, V.L. Acoff, J Electron Mater. 35(7) (2006) pp.1530-36

DOI: 10.1007/s11664-006-0144-7

Google Scholar

[6] Satyanarayan, K.N. Prabhu, Adv. Colloid Interface Science. 166 (2011) pp.87-118

DOI: 10.1016/j.cis.2011.05.005

Google Scholar

[7] G. Kumar, K.N. Prabhu, Adv. Colloid Interface Sci. 133 (2007) p.61–89

DOI: 10.1016/j.cis.2007.04.009

Google Scholar

[8] Satyanarayan, K.N. Prabhu, JASTM Int.7(9)(2010)JAI103052

DOI: 10.1520/JAI103052

Google Scholar

[9] T. Novak, F. Steiner, Electronic Technology. 32nd International spring seminar ISSE (2009)

DOI: 10.1109/ISSE.2009.5206976

Google Scholar

[10] R. Mayappan, A.B. Ismail, Z.A. Ahmad, T. Ariga, L.B. Hussain, J. Teknologi. 46C (2007) p.1–14

Google Scholar

[11] K.N. Prabhu, Satyanarayan, Mater Sci Technol. 27(7) (2011) pp.1157-62

DOI: 10.1179/026708310X12815992418337

Google Scholar

[12] Y.Y. Chen, J.G. Duh, J. Mater. Sci.: Mater. Electron. 11 (2000) p.79–283 doi: 10.1023/A: 1008917530144

Google Scholar

[13] K.N. Prabhu, G. Kumar, J Electron Packag. 132 (2010) 041001-7

DOI: 10.1115/1.4002899

Google Scholar

[14] C.C. Fu, C. C. Chen, Journal of the Taiwan Institute of Chemical Engineers, 42 (2) (2011) pp.350-55

DOI: 10.1016/j.jtice.2010.07.014

Google Scholar

[15] N. Zhao, X.M. Pan, D.Q. Yu, H.T. Ma, L. Wang, J Electron Mater. 38(6) (2009) p.828–33

DOI: 10.1007/s11664-008-0611-4

Google Scholar

[16] D.R. Nalagatla, Master of Science thesis, The Graduate School, University of Kentucky (2007) (http://archive.uky.edu/bitstream/10225/736/Thesis_Nalagatla.pdf,) accessed on 10-12-(2010)

Google Scholar