The Role of Nanostructured Active Support Materials in Electrocatalysis of Direct Methanol Fuel Cell Reactions

Article Preview

Abstract:

The necessity for developing oxidation–resistant noncarbon catalyst support materials for use in the electrode/electrolyte interface of proton exchange membrane (PEM) based direct methanol fuel cells (DMFCs) is emphasized. A great deal of attention is currently being paid to nanostructured catalytic and support materials for electrocatalysing both anodic methanol oxidation reaction (MOR) and cathodic oxygen reduction reaction (ORR). The performances of various nanostructured transition metal oxides have been reviewed. Mn3O4 nanorods have been synthesized by us and their performances for electrocatalysing the MOR with Pd catalyst are discussed. A model explaining how nanostructured active support materials can extract active oxygen atoms required for complete oxidation of methanol from the electrolyte and supply to the adjacent catalytic sites has been proposed.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

709-714

Citation:

Online since:

January 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. Q. Song, P. Tsiakaras, Appl. Catal, B 63 (2006) 18.

Google Scholar

[2] L. H. Jiang, G. Q. Sun, S. L. Wang, G. X. Wang, Q. Xin, Z. H. Zhou, B. Zhou, Electrochem. Commun. 7 (2005) 663.

Google Scholar

[3] Z. W. Chen, M. Waje, Angew. Chem. Int. Ed. 46 (2007) 4061.

Google Scholar

[4] B. Parkand E. J. Cairns, Electrochem. Commun. 13 (2011) 75-77 and references cited therein.

Google Scholar

[5] Y. Ou, X. Cui, X. Zhang, Z. Jiang, J. Power Sources 195 (2010) 1365.

Google Scholar

[6] O. T. M. Musthafa, S. Sampath, Chem. Commun. 67 (2008).

Google Scholar

[7] M. Jian, M. Malig, S.Chen, A. Chen, Electorchem. Comm. 13 (2011) 370.

Google Scholar

[8] X. Guo, D. J. Guo, X. P. Qiu, L. Q. Chen, W. T. Zhu , J. Power Sources 194 (2009) 281.

Google Scholar

[9] A. Bauer, K. Lee, C. Song, Y. Xie, J. Zhang, R. Hui, J. Power Sources 195 (2010) 3105.

Google Scholar

[10] J. M. Macak, F. S. Stein, P. Schmuk, Electrochem. Commun. 9 (2007) 1783.

Google Scholar

[11] Y. Fu, Z. D.Wei, S. G. Chen, L. Li, Y. C. Feng, Y. Q.Wang, X. L. Ma, M. J. Liao, P. K. Shen, S. P. Jiang , J. Power Sources 189, 982 (2009).

Google Scholar

[12] S. J. Yoo, T. Y. Jeon, Y. H. Cho, K. S. Lee, X. E. Sing, Electrochem. Acta 55 (2010) 7939.

Google Scholar

[13] W. Jochuma, D. Ederb, G. Kaltenhausera, R. Kramer, Topics in Catalysis 46 (2007) 49.

Google Scholar

[14] K. W. Park, K. S. Seol, Electrochem. Commun. 9 (2007) 2256.

Google Scholar

[15] N. R. Elezovic, B. M. Babic, L. J. G. Krstajic, V. Radmilovic, N. V. Krstajic, L. J. Vracar. J. Power Sources 195 (2010) 3961.

Google Scholar

[16] D. S. Kim, E. F. Abo Zeid, Y. T. Kim, 55 (2010) 5628.

Google Scholar

[17] H. Song, P. Xiao, X. Qiu, W. Zhu, J. Power Sources, 195 (2010) 1610.

Google Scholar

[18] K. F. Zang, D. J. Guo, X. Liu, J. Li, H. L. Li, Z. X. Su, J. Power Sources, 162 (2006) 1077.

Google Scholar

[19] S. B. Ma, K.W. Yoon, X. Q. Yang, K. Y. Ahn, K. H. Oh, J. Power Sources178 (2008) 4839.

Google Scholar

[20] M. W. Xu, G. Y. Gao, W. J. Zhou, K. F. Zhang, H. L. Li, J. Power Sources. 175 (2008) 217.

Google Scholar

[21] R. Manoharan and J. Prabhuram, Bull. Electrochem. 15 (1999) 357 and references cited therein.

Google Scholar

[22] G. N. Vayssilvol, Y. Lykhach, A. Migani, T. Staudt, G.P. Petrova, N.Tsud, T. Skala, A. Bruix, F. Illas, K. C. Prince, V. Matolin, K. M. Neyman and J. Libuda, Nature Mat. 10 (2011) 310.

DOI: 10.1038/nmat2976

Google Scholar