Thermally Grown Oxide Layer on Aluminized Superalloy 690 Substrate and its Stability in Nitrate-Based Environment

Article Preview

Abstract:

Aluminides were formed on Ni-Cr-Fe based superalloy 690 substrates using pack aluminization process at 1273 K in controlled atmosphere. Thermal oxidation of aluminized specimens was carried out at 1273 K for a total period of 4 hours in air. The thermally grown oxide layer was examined using X-ray diffraction (XRD) studies on top surface and scanning electron microscopy (SEM) with energy dispersive spectroscopy (EDS) analysis along the cross-section of the sample. The oxide layer developed on aluminized superalloy 690 substrate consisted of Al2O3 layer with a thickness of about 2 μm. The oxidized specimens were exposed in nitrate-based environment (simulated high-level nuclear liquid waste) at 373 K for a total period of 216 hours. A good adherence of aluminide coatings was noticed even after prolonged exposure in nitrate-based solution with a little amount of material dissolution from the edges of the specimens. XRD studies on exposed specimen indicated existence of Al2O3 layer on the top surface, which is believed to have resulted in good adherence of aluminide coatings.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

733-738

Citation:

Online since:

January 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] D. Li, Y. Xu, D.Lin, Oxidation behavior of FeAl alloys with and without titanium, J. Mater. Sci. 36 (2001) 979-983.

Google Scholar

[2] J. Xia, C.X. Li, H. Dong, Thermal oxidation treatment of B2 iron aluminide for improved wear resistance, Wear 258 (2005) 1804-1812.

DOI: 10.1016/j.wear.2004.12.016

Google Scholar

[3] Z. D. Xiang, S. R. Rose, P. K. Datta, Low-temperature formation and oxidation resistance of nickel aluminide/nickel hybrid coatings on alloy steels, Scripta Mater. 59 (2008) 99-102.

DOI: 10.1016/j.scriptamat.2008.02.034

Google Scholar

[4] C. Houngniou, S. Chevalier, J. P. Larpin, Synthesis and characterization of pack cemented aluminide coatings on metals, Appl. Surf. Sci. 236 (2004) 256-269.

DOI: 10.1016/j.apsusc.2004.04.026

Google Scholar

[5] R. Prescott, M. J. Graham, The oxidation of iron-aluminum alloys, Oxidation of Metals 38 (1992) 73-87.

DOI: 10.1007/bf00665045

Google Scholar

[6] M. Yamaguchi, H. Inui, K. Ito, High-temperature structural intermetallics, Acta Mater. 48 (2000) 307-322.

DOI: 10.1016/s1359-6454(99)00301-8

Google Scholar

[7] R. S. Sundar, R. G. baligidad, Y. V. R. K. Prasad, D. H. Sastry, Processing of iron aluminides, Mater. Sci. Eng. A 258 (1998) 219-228.

DOI: 10.1016/s0921-5093(98)00937-x

Google Scholar

[8] A. M. Hodge, D. C. Dunand, Synthesis of nickel-aluminide foams by pack-aluminization of nickel foams, Intermetallics 9 (2001) 581-589.

DOI: 10.1016/s0966-9795(01)00047-4

Google Scholar

[9] Z. D. Xiang, J. S. Burnell-Gray, P. K. Datta, Aluminide coating formation on nickel-base superalloys by pack cementation process, J. Mater. Sci. 36 (2001) 5673-5682.

Google Scholar

[10] C. Christoglou, N. Voudouris, G. N. Angelopoulos, Formation and modelling of aluminide coating on iron by a fluidised bed CVD process, Surf. Coat. Technol. 155 (2002) 51-58.

DOI: 10.1016/s0257-8972(02)00044-0

Google Scholar

[11] N. Voudouris, C. Christoglou, G. N. Angelopoulos, Formation of aluminide coatings on nickel by a fluidized bed CVD process, Surf. Coat. Technol. 141 (2001) 275-282.

DOI: 10.1016/s0257-8972(01)01193-8

Google Scholar

[12] J. A. Hearley, J. A. little, A. J. Sturgeon, The effect of spray parameters on the properties of high velocity oxy-fuel NiAl intermetallic coatings, Surf. Coat. Technol. 123 (2000) 210-218.

DOI: 10.1016/s0257-8972(99)00511-3

Google Scholar

[13] L. Levin, A. Ginzburg, L. Klinger, T. Werber, A. Katsman, P. Schaaf, Controlled formation of surface layers by pack aluminization, Surf. Coat. Technol. 106 (1998) 209-213.

DOI: 10.1016/s0257-8972(98)00529-5

Google Scholar

[14] R. S. Dutta, S. Majumdar, P. K. Limaye, U. D. Kulkarni, G. K. Dey, Characterization of aluminides formed on superalloy 690 substrate, Trans. IIM 64 (2011) 31-36.

DOI: 10.1007/s12666-011-0006-8

Google Scholar

[15] T. F. An, H. R. Guan, X. F. Sun, Z. Q. Hu, Effect of the θ-a-Al2O3 transformation in scales on the oxidation behavior of nickel-base superalloy with an aluminide diffusion coating, Oxidation of Metals 54 (2000) 301-316.

Google Scholar

[16] M. W. Brumm, H. J. Grabke, The oxidation behavior of NiAl-I. Phase transformations in the alumina scale during oxidation of NiAl and NiAl-Cr alloys, Corr. Sci. 33 (1992) 1677-1690.

DOI: 10.1016/0010-938x(92)90002-k

Google Scholar

[17] G. Liu, M. Li, M. Zhu, Y. Zhou, Transient of alumina oxide scale on b-NiAl coated on M38G alloy at 9500C, Intermetallics 15 (2007) 1285-1290.

DOI: 10.1016/j.intermet.2007.03.010

Google Scholar

[18] H. J. Choi, J. Jedlinski, B. Yao, Y. H. Sohn, Transmission electron microscopy observations on the phase composition and microstructure of the oxidation scale grown on as-polished and yttrium-implanted b-NiAl, Surf. Coat. Technol. 205 (2010) 1206-1210.

DOI: 10.1016/j.surfcoat.2010.10.034

Google Scholar

[19] I. Vidensky, H. Gan, L. Pegg, in: G. L. Smith, S. K. Sundaram, D. R. Spearing (Eds.), Environmental Issues and Waste Management Technologies, American Ceramic Society, Ohio, 2002, pp.141-150.

Google Scholar

[20] S. K. Tiwari, R. K. Sahu, A. K. Pramanick, R. Singh, Development of conversion coating on mild steel prior to sol gel nanostructured Al2O3 coating for enhancement of corrosion resistance, Surf. Coat. Technol. 205 (2011) 4960-4967.

DOI: 10.1016/j.surfcoat.2011.04.087

Google Scholar

[21] S. K. Tiwari, T. Mishra, M. K. Gunjan, A. S. Bhattacharyya, T. B. Sigh, R. Singh, Development and characterization of sol-gel silica-alumina composite coatings on AISI 316 L for implant applications, Surf. Coat. Technol. 201 (2007) 7582-7588.

DOI: 10.1016/j.surfcoat.2007.02.026

Google Scholar