FTIR and DSC Study of Se92Te8-xSnx (x=0, 3 and 5) Chalcogenide Glasses

Article Preview

Abstract:

In the present work, DSC and FTIR study of the of Se92Te8-xSnx ( x=0, 2 and 4) glassy samples has been studied. FTIR spectra was taken in wavelength region 50-600 cm-1. The parameters like theoretical wave number and activation energy of glass transition and crystallization has been calculated by Kissinger’method and Augis and Bennett’approximation. With the addition of Sn, Far-IR spectra shift toward high frequency side and new bands starts appearing in the spectra. The Sn atom appear to substitute for the selenium atoms in the outrigger sites due to large bond formation probability. Activation energy of glass transition increases with Sn addition while for crystallization, it also increases except at x=1.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

745-750

Citation:

Online since:

January 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Z.H. Khan, M. Husain, Electrical and optical properties of thin film of a-Se70Te30 nanorods. J of Alloys and Compounds, 486 (2009) 774-779.

DOI: 10.1016/j.jallcom.2009.07.049

Google Scholar

[2] S. Kumar, R. Arora, A. Kumar . High-field conduction in a-Se80Te20 and a-Se80Te10M10 (M=Ag, Cd or Sb). Physica B 183 (1993)172.

DOI: 10.1016/0921-4526(93)90069-i

Google Scholar

[3] M.M. Hafiz, A.H. Moharram, M.A. Abdel-Rehim, A.A. Abu-Sehly. The effect of annealing on the optical absorption and electrical conduction of amorphous As24.5Te71Cd4.5 thin films. Thin Solid Films 292 (1997) 7.

DOI: 10.1016/s0040-6090(96)09091-8

Google Scholar

[4] Z.H. Khan, M. Zulfequar, M. Husain. Optical properties of a-Se80-xTexGa20 thin films J Opt. 28 (1997)151.

Google Scholar

[5] K.K. Srivastava, A.Kumar, O.S. Panwar, K.N. Lakshminarayan. Dielectric relaxation study of chalcogenide glasses. J Non-Cryst Solids 33 (1979) 205.

DOI: 10.1016/0022-3093(79)90050-4

Google Scholar

[6] K.Abe, H. Takebe, K.Maronaga. Preparation and properties of Ge---Ga---S glasses for laser hosts. J Non-Cryst Solids 212 (1997)143.

DOI: 10.1016/s0022-3093(96)00655-2

Google Scholar

[7] K.Wei, D.P. Machewirth, J. Wenzel, G.H. Sigel. Pr3+doped Ge---Ga---S glasses for 1.3 μm optical fiber amplifiers. J Non-Cryst Solids 182 (1995) 257.

DOI: 10.1016/0022-3093(94)00513-3

Google Scholar

[8] K.Tanaka. Structural phase transitions in chalcogenide glasses. Phys Rev. B 39 (1989)1270.

Google Scholar

[9] J.Y. Shim, S.W. Park, H.K. Baik. Silicide formation in cobalt/amorphous silicon, amorphous CoSi and bias-induced CoSi films. Thin Solid Films 292 (1997) 31.

DOI: 10.1016/s0040-6090(96)08929-8

Google Scholar

[10] J.M. Saitar, J. Ledru, A. Hamou, G.Saffarini. Crystallization of AsxSe1−x from the glassy state (0.005<x<0.03). Physica B 245 (1998)256.

DOI: 10.1016/s0921-4526(97)00669-8

Google Scholar

[11] L. Pauling, The Nature of the Chemical Bonds, (Cornell University, Ithaca, 1962).

Google Scholar

[12] G.J. Ball, J.M. Chamberlain. Infrared structural study of Gey Se1-y glasses. J. of non-cryst. Solids.29 (1978)239.

Google Scholar

[13] Z. Wang, C. Tu, Y. Li, Q. Chen. J. The effects of Sn and Bi additions on properties and structure in Ge-Se-Te chalcogenide glass. J. of Non-Crystalline Solids, 191 (1995) 132-7.

DOI: 10.1016/0022-3093(95)00249-9

Google Scholar

[14] A. B. Adam, Infrared and Raman Studies on Snx-Sb5-Se95-x Chalcogenide Glasses J. King Saud Univ., Eng. Sc. 21, (2009) 93.

DOI: 10.1016/j.jksus.2009.07.002

Google Scholar

[15] H.E. Kissinger, Variation of Peak Temperature With Heating Rate in Differential Thermal Analysis. J. Res. Mater. Bur. Stand. 57 (1956) 217-21.

DOI: 10.6028/jres.057.026

Google Scholar