Microstructure, Texture and Recrystallisation Mechanisms of an Al-20%Sn Deformation Processed Metal-Metal Composite

Article Preview

Abstract:

Al-Sn alloys for tribological applications are industrially important alloys which have attracted little attention over their history. Being cold rolled directly from thin cast slabs and consisting of two ductile phases, their processing and physical behaviour are distinct from classical Al-Alloys. During cold rolling, the coarse-grained, random texture of the slab is transformed into the classical rolling texture of a fine-grained Al-alloy, with elongated Al-grains delimited by thin Sn-ribbons. During annealing at 300°C, the interior of the Al-grains recrystallises rapidly while the liquid Sn-phase migrates toward Al-grain triple lines to form a reticular structure. A weak texture, dominated by Goss and P is produced. Grain growth within the original cold-rolled grains is fast, but once the recrystallised grain size reaches the length scale of the second-phase distribution, it slows down and both phases coarsen simultaneously, accompanied by a significant texture change.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 715-716)

Pages:

522-527

Citation:

Online since:

April 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R. Schouwenaars, V. H. Jacobo and A. Ortiz. Mater. Char., 59 (2008) p.312.

Google Scholar

[2] R. Andresen, Master's thesis, Universidad Nacional Autónoma de México, (2010).

Google Scholar

[3] R. Schouwenaars, J. Torres, V.H. Jacobo, A. Ortiz. Mater. Sci. Forum 539-543 (2007) p.317.

Google Scholar

[4] R. Schouwenaars, H. Duran, V.H. Jacobo, A. Ortiz, Mater. Sci. Forum 638-642 (2010) p.321.

Google Scholar

[5] R. Schouwenaars, V.H. Jacobo, A. Ortiz. Wear,  263 (2007) p.727.

Google Scholar

[6] Van Houtte, P. Textures and Microstructures, 6, (1984) p.137.

Google Scholar

[7] Underwood E.E. Quantitative stereology. Addison-Wesley; Reading, MA, (1970).

Google Scholar

[8] Hirsch, J., Lücke, K. Acta Metall. 36 (1988) p.2863.

Google Scholar

[9] Engler, O., Hirsch, J. Mater. Sci. Eng. A336 (2002) p.249.

Google Scholar

[10] Engler, O., Hirsch, J., Lücke, K. Acta Metall. 37 (1989) p.2734.

Google Scholar

[11] Humphreys, F.J. and Hatherly, M. Recrystallisation and related annealing phenomena. Elsevier Science, Netherlands, (1995).

Google Scholar

[12] Daaland, O., Nes, E. Acta Mater. 44 (1996) p.1413.

Google Scholar

[13] Engler, O. Scripta Mater. (2001) p.229.

Google Scholar

[14] Engler, O., Hirsch, J., Lücke, K. Acta Metall. 43 (1989) p.121.

Google Scholar

[15] Engler, O. Metall. Mater. Trans. A. 30A (1999) p.1517.

Google Scholar

[16] Liu, W.C., Morris, J.G. Scripta Mater. 56 (2007) p.217.

Google Scholar

[17] Atkinson H.V., Burke K., Vaneetveld G., Mater. Sci. Eng. A 490 (2008) p.266.

Google Scholar

[18] Atkinson H.V., Liu, D. Mater. Sci. Eng. A 496 (2008) p.439.

Google Scholar

[19] Hughes, D. A. Hansen, N. Acta Mater. 45 (1997) p.3871.

Google Scholar

[20] Doherty, R.D., Hughes, D.A., Humphreys, F.J., Jonas, J.J., Juul Jensen, D., Kassner, M.E., King, W.E., McNelly, T.R., McQueen, H.J. Rollet, A.D. Mater. Sci. Eng. A238 (1997) p.219.

Google Scholar

[21] R. Schouwenaars, S. Cerrud and A. Ortiz: Recrystallisation Kinetics in an Aluminium-Tin alloy for bimetal Bearings. In: Recrystallisation and Grain Growth, Ed. G. Gottstein and D.A. Molodov, Springer Verlag, Heidelberg, 2001, p.1311.

Google Scholar