Magnetically Affected Texture and Microstructure Evolution during Grain Growth in Zirconium

Article Preview

Abstract:

The effect of a magnetic field on texture and microstructure development in cold rolled (80%) commercially pure zirconium (Zr701) was investigated. X-ray diffraction and EBSD measurements were utilized for the texture and microstructure characterization. The results revealed that a magnetic field promotes grain growth in the investigated material. During annealings at 550°C this is particularly apparent from the faster development of specific (0/180, 35, 30) texture components and the bigger mean grain size after magnetic annealing. The magnetic annealing at 700°C resulted in an asymmetry of the two major texture components. This is due to a magnetic driving force for grain growth arising from the anisotropic magnetic susceptibility of zirconium. During annealing at 700°C the abnormal grain growth occurred. This behavior is attributed to the higher mobility of grain boundaries between grains misoriented by 30° around [000. The magnetic field essentially enhanced the observed abnormal grain growth.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 715-716)

Pages:

946-951

Citation:

Online since:

April 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] D. A. Molodov, G. Gottstein, F. Heringhaus and L. S. Shvindlerman: Scripta Mater. Vol. 37 (1997), p.1207.

DOI: 10.1016/s1359-6462(97)00227-3

Google Scholar

[2] D. A. Molodov, G. Gottstein, F. Heringhaus and L. S. Shvindlerman: Scripta Mater. Vol. 46 (1998), p.5627.

Google Scholar

[3] A. D. Sheikh-Ali, D. A. Molodov and H. Garmestani: Appl. Phys. Lett. Vol. 82 (2003), p.3005.

Google Scholar

[4] P. J. Konijnenberg, D. A. Molodov and G. Gottstein: Mater. Sci. Forum Vol. 467-470 (2004), p.763.

Google Scholar

[5] A. D. Sheikh-Ali, D. A. Molodov, H. Garmestani: Scripta Mater. Vol. 48 (2003), p.483.

Google Scholar

[6] D. A. Molodov: Materials Science Forum, 2004, Vol. 467-470, pp.697-706.

Google Scholar

[7] D. A. Molodov, P. J. Konijnenberg: Z. Metallkd. Vol. 96 (2005), pp.1158-1165.

Google Scholar

[8] D. A. Molodov, P. J. Konijnenberg: Scripta Mater. Vol. 54 (2006), p.977.

Google Scholar

[9] P. J. Konijnenberg, A. Ziemons, D. A. Molodov and G. Gottstein: Rev. Sci. Instrum. Vol. 79 (2008), p.013701.

Google Scholar

[10] Chr. Günster, D. A. Molodov and G. Gottstein: Scripta Mater. Vol. 63 (2010), p.300.

Google Scholar

[11] W. W. Mullins: Acta Metall. Vol. 4 (1956), pp.421-432.

Google Scholar

[12] D. A. Molodov, A. D. Sheikh-Ali: Acta Mater. Vol. 52 (2004), p.4377.

Google Scholar

[13] D. A. Molodov, P. J. Konijnenberg, N. Bozzolo, A. D. Sheikh-Ali: Mater. Letters Vol. 59 (2005), p.3209.

DOI: 10.1016/j.matlet.2005.05.057

Google Scholar

[14] D. A. Molodov, Chr. Bollmann, P. J. Konijnenberg, L. A. Barrales-Mora, V. Mohles: Materials Trans. Vol. 48 (2007), p.2800.

DOI: 10.2320/matertrans.mi200701

Google Scholar

[15] L. A. Barrales-Mora, V. Mohles, P. J. Konijnenberg, D. A. Molodov: Comp. Mater. Sci. Vol. Vol. 39 (2007), p.160.

Google Scholar

[16] M. Dahms, H. J. Bunge: J. Appl. Cryst. Vol. 22 (1989), p.439.

Google Scholar

[17] M. Dahms: Appl. Cryst. Vol. 25 (1992), p.259.

Google Scholar

[18] N. Dewobroto, N. Bozzolo, P. Barberis, F. Wagner: Int. J. Mater. Res. Vol. 97 (2006), p.826.

Google Scholar

[19] F. Gerspach, N. Bozzolo, F. Wagner: Scripta Mater. Vol. 60 (2009), p.203.

Google Scholar

[20] D. A. Molodov, Chr. Bollmann, G. Gottstein: Mater. Sci. Eng. Vol. A 467 (2007), p.71.

Google Scholar

[21] D. A. Molodov, P. J. Konijnenberg, L. A. Barrales-Mora, V. Mohles: J. Mater. Sci. Vol. 41 (2006), p.7853.

DOI: 10.1007/s10853-006-0422-z

Google Scholar