Mobility Driven Abnormal Grain Growth in the Presence of Particles

Article Preview

Abstract:

Simulation of mobility-driven abnormal grain growth in the presence of particles in a 3D Potts Monte Carlo model has been investigated, and even though the driving force in this case is identical to normal grain growth, Zener pinning does not occur. Instead the particles seem merely to have a small inhibiting effect on the number of abnormal grains, and this effect only has a noticeable influence for volume fractions of particles above 5 vol%.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 715-716)

Pages:

930-935

Citation:

Online since:

April 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] N. Chen, S. Zaefferer, L. Lahn, K. Gunther, and D. Raabe. Materials Science Forum, 408 (2002), p.949.

Google Scholar

[2] J.M. Chang, K.W. Xu, and V. Ji. Journal of Crystal Growth, 226(1) (2001), p.168.

Google Scholar

[3] C.G. Dunn and J.L. Walter. Recrystallization, Grain Growth and Textures. American Society for Metals, (1966).

Google Scholar

[4] F.J. Humphreys and M. Hatherly. Recrystallization and Related Annealing Phenomena. Pergamon, 1st edition, (1995).

Google Scholar

[5] F.J. Humphreys. Acta Materialia, 45(10) (1997), p.4231.

Google Scholar

[6] F.J. Humphreys. Acta Materialia, 45(12) (1997), p.5031.

Google Scholar

[7] P.R. Rios. Acta Materialia, 45(4) (1997), p.1785.

Google Scholar

[8] C.S. Smith. Trans. Am. Inst. Metall. Engrs., 175 (1948), p.15.

Google Scholar

[9] O. Flores and L. Martinez. Journal of Materials Science, 32(22) (1997), p.5985.

Google Scholar

[10] M. Hillert. Acta Metallurgica, 13(3) (1965), p.227.

Google Scholar

[11] T. Gladman. Proc. Roy. Soc., 294(1438) (1966), p.298.

Google Scholar

[12] E.A. Holm, M.A. Miodownik, and A.D. Rollett. Acta Materialia, 51 (2003), p.2701.

Google Scholar

[13] E.A. Holm, M. Miodownik, and K.J. Healey. Materials Science Forum, Vols 467-470 (2004), p.611.

Google Scholar

[14] M.P. Anderson, G.S. Grest, and D.J. Srolovitz. Phil. Mag. B, 59(3) (1989), p.293.

Google Scholar

[15] E.A. Holm, G.N. Hassold, and M.A. Miodownik. Acta Materialia, 49(15) (2001), p.2981.

Google Scholar

[16] G.S. Grest, M.P. Anderson, D.J. Srolovitz, and A.D. Rollett. Scripta Metallurgica et Materialia, 24 (1990), p.661.

DOI: 10.1016/0956-716x(90)90219-7

Google Scholar

[17] M. Miodownik, E.A. Holm, and G.N. Hassold. Scripta Materialia, 42 (2000), p.1173.

Google Scholar

[18] D. Raabe. Acta Materialia, 48(7) (2000), p.1617.

Google Scholar

[19] G.N. Hassold and E.A. Holm. Computers in Physics, 7(1) (1993), p.97.

Google Scholar