Materials Science Forum
Vol. 725
Vol. 725
Materials Science Forum
Vol. 724
Vol. 724
Materials Science Forum
Vol. 723
Vol. 723
Materials Science Forum
Vol. 722
Vol. 722
Materials Science Forum
Vol. 721
Vol. 721
Materials Science Forum
Vols. 717-720
Vols. 717-720
Materials Science Forum
Vols. 715-716
Vols. 715-716
Materials Science Forum
Vol. 714
Vol. 714
Materials Science Forum
Vol. 713
Vol. 713
Materials Science Forum
Vol. 712
Vol. 712
Materials Science Forum
Vol. 711
Vol. 711
Materials Science Forum
Vol. 710
Vol. 710
Materials Science Forum
Vols. 706-709
Vols. 706-709
Materials Science Forum Vols. 715-716
Paper Title Page
Abstract: t has been demonstrated in previous work that a two-step annealing treatment, including a low-temperature, long-time annealing and a subsequent high-temperature annealing, is a promising route to control the microstructure of a heavily deformed metal. In the present study, structural parameters are quantified such as boundary spacing, misorientation angle and dislocation density for 99.99% aluminium deformed by accumulative roll-bonding to a strain of 4.8. Two different annealing processes have been applied; (i) one-step annealing for 0.5 h at 100-400°C and (ii) two-step annealing for 6 h at 175°C followed by 0.5 h annealing at 200-600°C, where the former treatment leads to discontinuous recrystallization and the latter to uniform structural coarsening. This behavior has been analyzed in terms of the relative change during annealing of energy stored as elastic energy in the dislocation structure and as boundary energy in the high-angle boundaries.
367
Recrystallization and Grain Growth in Ultra Fine Grained Materials Produced by High Pressure Torsion
Abstract: Investigations of the microstructure of materials processed via severe plastic deformation methods such as high pressure torsion (HPT) and their recrystallization behaviour is of great interest as they are capable of producing ultra fine grained material (UFD) with good mechanical properties.
373
Abstract: A model is suggested to analyze recovery kinetics of heavily deformed aluminum. The model is based on the hardness of isothermal annealed samples before recrystallization takes place, and it can be extrapolated to longer annealing times to factor out the recrystallization component of the hardness for conditions where recovery and recrystallization overlap. The model is applied to the isothermal recovery at temperatures between 140 and 220°C of commercial purity aluminum deformed to true strain 5.5. EBSD measurements have been carried out to detect the onset of discontinuous recrystallization. Furthermore, comparison between the present model and a similar recently developed recovery model is made, and the result is discussed.
374
Abstract: The dynamic process of grain evolution in a Super304H austenitic stainless steel was studied in compression tests. The tests were carried out to a strain of 0.7 at temperatures ranging from 700 to 1000°C and strain rate of 10-3s-1. In addition to single pass compression the multiple compressions with changing the loading direction in 90o and decreasing the temperature with step of 100°C from 1000 to 700°C in each pass were utilized to achieve large cumulative strains. Under multiple compression the values of flow stresses were lower than those at single-pass compressions under the same temperatures. The fraction of dynamically recrystallized grains decreased from 1.0 to almost zero with decreasing temperature in single-pass compressions. On the other hand, almost fully recrystallized structure developed under conditions of multiple compressions. The size of dynamically recrystallized grains decreased with decreasing the deformation temperature, approaching a submicrometer scale level at 700°C. The relationship between the deformation conditions and operating mechanisms of dynamic recrystallization is discussed in some details.
380
Abstract: Polycrystalline Ni (99.5 %) has been deformed to an ultra-high strain of εvM=100 (εvM, von Mises strain) by high pressure torsion (HPT) at room temperature. The deformed sample is nanostructured with an average boundary spacing of 90 nm, a high density of dislocations of >1015m-2 and a large fraction of high angle boundaries (>15o) 68% as determined by transmission electron microscopy and 80% as determined by electron backscatter diffraction. The thermal behavior of this nanostructued sample has been investigated by isochronal annealing for 1h at temperatures from 100 to 600°C, and the evolution of the structural parameters (boundary spacing, average boundary misorientation angle and the fraction of high angle boundaries), crystallographic texture and hardness have been determined. Based on microstructural parameters the stored energy in the deformed state has been estimated to be 24 MPa. The isochronal annealing leads to a hardness drop in three stages: a relatively small decrease at low temperatures (recovery) followed by a rapid decrease at intermediate temperatures (discontinuous recrystallization) and a slow decrease at high temperatures (grain growth). Due to the presence of a small amount of impurity elements, the recovery and recrystallization are strongly retarded in comparison with Ni of high purity (99.967%). This finding emphasizes the importance of alloying in delaying the process of recovery and recrystallization, which enables a tailoring of the microstructure and properties through an optimized annealing treatment.
387
Abstract: New in-situ 3DXRD results obtained since the last Rex&GG conference are presented and discussed. This includes: Documentation of the formation of nuclei with new orientations, determination of apparent activation energies for individual bulk grains during recrystallization and evolution in the 3D microstructure during grain growth.
393
Abstract: The control of the plastic anisotropy during forming of a metallic sheet requires detailed knowledge on its microstructure and, especially, crystallographic texture. During the thermo-mechanical processing of aluminium sheet products in commercial production lines the material experiences a complex history of temperature, time and strain paths, which result in alternating cycles of deformation and recrystallization with the associated changes in texture and microstructure. Thus, computer-based alloy and process development requires integration of models for simulating the evolution of microstructure, microchemistry and crystallographic texture into process models of the thermo-mechanical production of Al sheet. The present study focuses on recent developments in linking softening modules that simulate the progress of recovery and recrystallization with the following texture changes to deformation and microchemistry models.
399
Abstract: Austenite grain size is an important microstructure parameter when processing steels as it provides the initial condition for the austenite decomposition that determines the final microstructure and thus properties of the steel. In low-carbon steels it is frequently difficult if not impossible to quantify the austenite grain size using conventional metallographic techniques. Laser-ultrasonics provides an attractive alternative to quantify the grain size in-situ during thermo-mechanical processing of a steel sample. The attenuation of the laser generated ultrasound wave is a function of the grain size. The present paper gives an overview on the state-of-the-art of this novel measurement technique. Using isothermal and non-isothermal grain growth tests in low-carbon steels the advantages and limitations of laser-ultrasonic measurements will be demonstrated. Further, their application for deformed samples will be presented to quantify austenite grain sizes during and after recrystallization. The in-situ measurements provide significantly new insights into the austenite microstructure evolution during thermo-mechanical processing of low-carbon steels. The implications on expediting the development of improved process models will be discussed.
407
Abstract: Molecular dynamics simulations of bicrystals show that grain boundaries undergo a thermal roughening transition, and the grain boundary mobility increases abruptly when the boundary roughens. The roughening transition temperature varies widely from boundary to boundary, ranging from less than 0.4 to more than 0.9 of the melting temperature. Thus, at typical annealing temperatures we expect polycrystals to contain both smooth (slow) and rough (fast) boundaries, with the fraction of each type varying with temperature.
415
Abstract: This paper presents a modelling strategy that combines neuro-fuzzy methods to dene the material model with cellular automata representations of the microstructure, all embedded within a nite element solver that can deal with the large deformations of metal processing technology. We use the acronym nf-CAFE as a label for the method. The need for such an approach arises from the twin demands of computational speed for quick solutions for ecient material characterisation by incorporating metallurgical knowledge for material design models and subsequent process control. In this strategy, the cellular automata hold the microstructural features in terms of sub-grain size and dislocation density which are modelled by a neuro-fuzzy system that predicts the ow stress. The proposed methodology is validated on a two dimensional (2D) plane strain compression nite element simulation with Al1%Mg alloy. Results from the simulations show the potential of the model for incorporating the eects of the underlying microstructure on the evolving ow stress elds. In doing this, the paper highlights the importance of understanding the local transition rules that aect the global behaviour during deformation.
416