Numerical Simulation of MgB2 Superconducting Magnetic Energy Storage Coil

Article Preview

Abstract:

A coupled thermal electromagnetic finite element analysis has been used to numerically simulate the electromagnetic characteristics of an MgB2 SMES coil. Magnetic field distribution data and current density predictions of the numerical model were compared with the literature and with the superconducting properties of explosively consolidated MgB2 samples measured experimentally. The material Jc characteristics were determined by applying Bean’s critical state model on the material magnetisation measurements conducted on a superconducting quantum interference device (SQUID).

You might also be interested in these eBooks

Info:

Periodical:

Pages:

33-38

Citation:

Online since:

June 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R. Musenich, P. Fabbricatore, S. Farinon, C. Ferdeghini, G. Grasso, M. Greco, A. Malagoli, R. Marabotto, M. Modica, D. Nardelli, A. S. Siri, M. Tassisto, and A. Tumino, Behavior of MgB2 React & Wind Coils Above 10 K, IEEE Trans. Appl. Supercond. 15 (2005) 1452-1456.

DOI: 10.1109/tasc.2005.849125

Google Scholar

[2] Z. Hong, A. M. Campbell, and T. A. Coombs, Numerical solution of critical state in superconductivity by finite element software, Supercond. Sci. Technol. 19 (2006) 1246–1252.

DOI: 10.1088/0953-2048/19/12/004

Google Scholar

[3] M. Modica, S. Angius, L. Bertora, D. Damiani, M. Marabotto, D. Nardelli, M. Perrella, M. Razeti, and M. Tassisto, Design, Construction and Tests of MgB2 Coils for the Development of a Cryogen Free Magnet, IEEE Trans. Appl. Supercond. 17 (2007) 2196-2199.

DOI: 10.1109/tasc.2007.898107

Google Scholar

[4] A. G. Mamalis, E. Hristoforou, I. D. Theodorakopoulos, T. Prikhna, Critical Current Density Investigations of Explosively Compacted and Extruded Powder-In-Tube MgB2 Superconductors, Supercond. Sci. Technol. 23 (2010) 095011.

DOI: 10.1088/0953-2048/23/9/095011

Google Scholar

[5] W. Yuan, A. Campbell, and T. Coombs, Design and modeling of a SMES coil, J. of Phys: Conference Series 234 (2010) 032068.

DOI: 10.1088/1742-6596/234/3/032068

Google Scholar

[6] A.-Rong Kim, Sang-Yong Kim, Kwang-Min Kim, Jin-Geun Kim, Seokho Kim, Minwon Park, In-Keun Yu, Sangjin Lee, Myung-Hwan Sohn, Hae-Jong Kim, Joon-Han Bae, and Ki-Chul Seong, Performance Analysis of a Toroid-Type HTS SMES adopted for Frequency Stabilization, IEEE Trans. Appl. Supercond. accepted for publication (2011).

DOI: 10.1109/tasc.2010.2044782

Google Scholar

[7] J.-M. Rey, M. Bruchon, X. Chaud, F. Debray, T. Lécrevisse, E. Mossang, and P. Tixador, Geometry Optimization for SMES Solenoids Using HTS Ribbons IEEE Trans. Appl. Supercond. accepted for publication (2011).

DOI: 10.1109/tasc.2010.2095402

Google Scholar

[8] A. Mamalis, E. Hristoforou, D. Manolakos, T. Prikhna, I. Theodorakopoulos and G. Kouzilos, Explosively Consolidated Powder-In-Tube MgB2 Superconductor Aided by Post Thermal Treatment, IEEE Trans. Appl. Supercond. 19 (2009) 20-27.

DOI: 10.1109/tasc.2008.2009124

Google Scholar