Spin-Lattice Relaxation of Dipolar Energy in Fluid Confined to Nanosize Cavities

Article Preview

Abstract:

We shown that by means of the two pulse sequence, the spin system of a liquid entrapped into nanosize cavities can be prepared in quasi-equilibrium states of high dipolar order. Then the dipolar order relaxes to thermal equilibrium with the lattice with a relaxation time T1d. It was shown that large number of spins T1d increases as the square to the concentration of the molecules C and decreases as inverse of the number of spins, T1d - C²/N. Study of spin lattice relaxation of dipolar energy in a spin system under the bounded region is important for extracting very useful parameter characterized nanomaterials from NMR experimental data.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

47-52

Citation:

Online since:

June 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. Goldman, Spin Temperature and Nuclear Resonance in Solids (Oxford: Clarendon) .1970.

Google Scholar

[2] C. P. Slichter and W. C. Holton, Phys. Rev. 122, 1701(1961).

Google Scholar

[3] J. Jeneer and P. Broekaert, Phys. Rev. 157, 232 (1967).

Google Scholar

[4] A. G. Redfield and W. N. Yu, Phys. Rev. 169 443, 1968 ; Phys. Rev. 177 1018 (1968).

Google Scholar

[5] A. Z. Genack and A. G. Redfield, Phys. Rev. Lett. 31, 1204 (1973).

Google Scholar

[6] L.J. Humphries and S.D. Day, Phys. Rev. B 12, 2601 (1975).

Google Scholar

[7] C. Tang and J. S. Waugh, Phys. Rev. B 45, 748 (1992).

Google Scholar

[8] G. B. Furman, A. M. Panich, A. Yochelis, E. M. Kunoff and S. D. Goren, Phys. Rev. B 55, 439 (1997).

Google Scholar

[9] G.B. Furman and S.D. Goren, J. Phys.: Condens. Matter 11, 4045 (1999).

Google Scholar

[10] G.B. Furman and S.D. Goren, Phys. Rev. B, 68, 064402-10 (2003).

Google Scholar

[11] G. S. Boutis, D. Greenbaum, H. Cho, D. G. Cory, and C. Ramanathan, Phys. Rev. Lett., 92, 137201-1-4 (2004).

Google Scholar

[12] J.-P. Korb, L. Malier, F. Cros, Shu Xu, and J. Jonas, Surface Dynamics of Liquids in Nanopores, Phys. Rev. Let, 77, 2312-2315 (1996).

DOI: 10.1103/physrevlett.77.2312

Google Scholar

[13] J. Baugh, A. Kleinhammes, D. Han, Q. Wang, Y. Wu, Confinement Effect on Dipole-Dipole Interactions in Nanofluids, Science, 294, 1505, (2001).

DOI: 10.1126/science.1065373

Google Scholar

[14] M.G. Rudavets , E.B. Fel'dman, JETP Letters, 75, 635 (2002)

Google Scholar

[15] E. B. Fel'dman and M. G. Rudavets, JETP, 98, 207 (2004).

Google Scholar

[16] S. I. Doronin, A. V. Fedorova, E. B. Fel'dman, and A. I. Zenchuk, J. Chem. Phys. 131, 104109 (2009).

Google Scholar

[17] A. V. Fedorova, E. B. Fel'dman, and D. E. Polianczyk, Appl.Magn. Reson. 35, 511 (2009).

Google Scholar

[18] J.Jeener, J. Chem. Phys. 134, 114519 (2011).

Google Scholar

[19] T. Tsukahara, W.Mizutani, K. Mawatari, and T. Kitamori, J. Phys. Chem. B 113, 10808 (2009).

Google Scholar

[20] D. Arnold, C. Plank, E. Erickson, F. Pike, Industrial & Engineering Chemistry Chemical & Engineering , 3, 253 (1958)

Google Scholar

[21] A. Abragam, The Principles of Nuclear Magnetism, Oxford Clarendon Press, 1961.

Google Scholar

[22] D. K. Green and J. G. Powlees, Proc. Phys. Soc ., 85, 87 (1965)

Google Scholar

[23] T. Gabler, A. Paschke, and G.Schuurmann, J. Chem. Eng. Data 41, 33 (1996).

Google Scholar

[24] E.B. Fel'dman, A.I. Zenchuk, Chemical Physics, 390, 24 (2011).

Google Scholar

[25] J. H. Strange, M. Rahman, E.C. Smith, Phys. Rev. Lett., 71, 3589 (1993).

Google Scholar

[26] J. Mitchell, J. B. W. Webber, J.H. Strange, Physics Reports, 461, 1 (2008)

Google Scholar

[27] S.-Y. Ryu, D. S. Kim, J.-D. Jeon, and S.-Y. Kwak, J. Phys. Chem. C 114, 17440 (2010).

Google Scholar