Metamaterial Based High Impedance Surface with Band-Pass Frequency Response

Abstract:

Article Preview

We introduce a metamaterial based parallel-plate waveguide, devised in microstrip technology that features two electromagnetic band-gaps. Since one of the band-gaps extends from zero frequency, the structure can be used as a band-pass filter. We perform a parametric study in view of facilitating design and optimisation.

Info:

Periodical:

Edited by:

A.G. Mamalis, A. Kladas and M. Enokizono

Pages:

59-64

Citation:

A. de Sabata et al., "Metamaterial Based High Impedance Surface with Band-Pass Frequency Response", Materials Science Forum, Vol. 721, pp. 59-64, 2012

Online since:

June 2012

Export:

Price:

$38.00

[1] M. Lapine and S. Tretyakov: IET Microw. Antennas Propag., 1, (1) (2007), p.3.

[2] D. Sievenpiper, L. Zhang, F. J. Boas, N. G. Alexópoulos, E. Yablonovitch: IEEE Trans. Microwave Theory Tech., vol. 47, no. 11, (1999), p. (2059).

[3] D. Sievenpiper: IEEE Trans. Antennas Propag., vol. 53, no. 1 (2005), p.236.

[4] Y. -J. Park, A. Herschlein, W. Wiesbeck: IEEE Trans. Microwave Theory Tech., vol. 49, no. 10 (2001) p.1854.

[5] M. Kaneko, S. Kirihara, Mater. Sci. Forum Vol. 6321-632 (2009), p.293.

[6] D. Tian, H. Zsang, Q. Wen, W. Ling, Y. Song, Z. Zhong, Mater. Sci. Forum Vol. 687 (2011), p.65.

[7] S. D. Rogers: IEEE Trans. Microw. Theory Tech., vol. 53, no. 8 (2005), p.2495.

[8] A. Tavallaee, R. Abhari: IET Microw. Antennas Propag., 1, (I) (2007), p.204.

[9] T. Kamgaing, O. M. Ramahi: IEEE Trans. Microw. Theory Tech., vol. 56, no. 10 (2008), p.2293.

[10] F. de Paulis, L. Raimondo, A. Orlandi: IEEE Trans. Microw. Theory Tech., vol. 58, no. 7 (2010), p.1867.

[11] W. Menzel, L. Zhu, K. Wu, and F. Bögelsach: IEEE Trans. Microwave Theory Tech., vol. 51, no. 2, (2003), p.364.

[12] Z. -C. Hao, J. -S. Hong, J. P. Parry, D. P. Hand: IEEE Trans. Microwave Theory Tech., vol. 57, no. 12, (2009), p.3080.

[13] L. -J. Zhang, C. -H. Liang, L. Liang, L. Chen: Progress in Electromagnetic Research, vol. 4, (2008), p.81.

[14] N. C. Karmakar, and M. N. Mollah: IEEE Trans. Microwave Theory Tech., vol. 51, no. 2 (2003), p.564.

[15] C. Gao, Z. N. Chen, Y. Y. Wang, N. Yang, and X. M. Qing: IEEE Trans. Microwave Theory Tech., vol. 54, no. 4 (2006), p.1519.

[16] V. Lazaris, A. Kladas, A. Mamalis, J. Tegopoulos, Proc. Seventh Japanese-Mediterranean and Central European Workshop on Applied Electromagnetic Engineering for Magnetic, Superconducting and Nano Materials JAPMED '6 (2009), p.121.

[17] P. T. Benkö, T. Gombor, S. Bilicz, Proc. Sixth Japanese-Mediterranean and Central European Workshop on Applied Electromagnetic Engineering for Magnetic, Superconducting and Nano Materials JAPMED '7 (2011), p.155.

[18] Microwave Studio, Computer Simulation Technology.

[19] T. Weiland: Electronics and Communication (AEÜ), vol. 31, (1977), p.116.

[20] T. Weiland, M. Timm, I. Munteanu: Microwave Magazine, vol. 9, no. 6, (2008), p.62.

[21] P L. Brillouin, Wave Propagation in Periodic Structures, (New York: Dover, 1955).

[22] E. Rajo-Iglesias, P. -S. Kildal: Proc. 3rd European Conference on Antennas and Propagation EUCAP09 (2009), p.33.

[23] E. Rajo-Iglesias, M. Caiazzo, L. Inclán-Sánchez, and P. -S. Kildal: IET Microw. Antennas Propag., 1, (I), (2007), p.184.

[24] L. Matekovits, A. De Sabata: Mater. Sci. Forum Vol. 670 (2011), p.497.

[25] L. Matekovits, A. De Sabata, M. Orefice: Proc. of 4th European Conference on Antennas and Propagat. EUCAP10 (2010), p.1.

[26] W. H. She, Z. N. Wing, J. W. Halloran, W. J. Chappell: Digest of 2005 IEEE MTT-S International Microwave Symposium, 12-17 June, (2005), p.865.

DOI: https://doi.org/10.1109/mwsym.2005.1516755

Fetching data from Crossref.
This may take some time to load.