Effect of TiO2 and TiB2 on Pressureless Sintering of B4C

Article Preview

Abstract:

This paper presents results of experiments on pressureless sintering of boron carbide (B4C) with addition of titânia (TiO2) and titanium diboride (TiB2). The TiB2 powder was added as a second phase and the TiO2 powder for reactive sintering and in-situ formation of TiB2. The final concentrations of TiB2 in the composites were 0 to 10 vol%. Sintering was performed at 2050 °C/30min in argon atmosphere. TiO2 was completely transformed into TiB2 with fine equiaxed grains distributed homogeneously. Composites obtained by in-situ reaction showed a densification increase with the concentration increase, while the composites with TiB2 powder mixture showed low densification in all compositions. Relative Density of the composite with 10 vol% of TiB2 obtained in-situ was 91% (TD) compared to 86 % for B4C only. Vickers hardness was about 29 GPa.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 727-728)

Pages:

1022-1027

Citation:

Online since:

August 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] F. Thevenot: J. Eur. Ceram. Soc. Vol. 6 (1990), p.205.

Google Scholar

[2] W. Weimer: Thermochemistry and Kinectics in Carbide, Nitride and Boride Materials Synthesis and Processing. Edited by Weimer A.W., Chapman and Hall, NY (1997).

DOI: 10.1007/978-94-009-0071-4_3

Google Scholar

[3] F. Thevenot: Key Eng. Mater. Vols. 56-57 (1991), p.59.

Google Scholar

[4] R.F. Speyer and H. Lee: J. Mater. Sci. Vol. 39 (2004), p.6017.

Google Scholar

[5] H. Lee and R.F. Speyer: J. Am. Ceram. Soc. Vol. 85(5) (2002), p.1291.

Google Scholar

[6] S. Hayun, S. Kalabukhov, V. Ezersky, M.P. Dariel and N. Frage: Ceram. Int. Vol. 36 (2010) p.451.

DOI: 10.1016/j.ceramint.2009.09.004

Google Scholar

[7] S. Yamada, K. Hirao, Y. Yamauchi and S. Kanzaki: J. Eur. Ceram. Soc. Vol. 23 (2003), p.1123.

Google Scholar

[8] H. Miyazaki, Y. Zhou, H. Hyuga, Y. Yoshizawa and T. Kumazawa: J. Eur. Ceram. Soc. Vol. 30 (2010), p.999.

Google Scholar

[9] S.L. Dole, S. Prochazka and R. H. Doremus: J. Am. Ceram. Soc. Vol. 72(6) 91989), p.958.

Google Scholar

[10] M. Mashhadi, E. Taheri-Nassaj, V. M. Sglavo, H. Sarpoolaky and N. Ehsani: Ceram. Int. Vol. 35 (2009), P. 831.

DOI: 10.1016/j.ceramint.2008.03.003

Google Scholar

[11] R.M. Rocha and F.C.L. Melo: Mat. Sci. Forum. Vols. 591-593 (2008), p.493.

Google Scholar

[12] S.L. Sigl: J. Eur. Ceram. Soc. Vol. 18 (1998), p.1521.

Google Scholar

[13] S. Yamada, K. Hirao and Y. Yamauchi: J. Mater. Sci. Lett. Vol. 21 (2002), p.1445.

Google Scholar

[14] T.K. Roy and C. Subramanian: Ceram. Int. Vol. 32 (2006), p.227.

Google Scholar

[15] A. Goldestein, Y. Yeshurum and A. Goldenberg: J. Eur. Ceram. Soc. Vol. 27 (2007), p.695.

Google Scholar

[16] M. Beauvy and R. J Angers: J. Less-Common Met. Vol. 80 (1981), p.227.

Google Scholar

[17] M. Kakazey, M. Vlasova, J. G. Gonzalez-Rodriguez, M. Dominguez-Patino and R. Leder: Mater. Sci. Engine. A Vol. 418 (2006), p.111.

Google Scholar

[18] L. Levin, N. Frage and M.P. Dariel: Metall. Mater. Trans. Vol. A30A 12 (1999), p.3201.

Google Scholar