Degradation of Y2O3-Stabilized ZrO2 Ceramics in Artificial Saliva: ICP Analysis of Dissolved Y3+ and Zr4+ Ions

Article Preview

Abstract:

ZrO2 ceramics are one of the most important materials used in dental prostheses production, due to their excellent mechanical resistance and chemical inertness in the mouth environment. Nevertheless, the combination of low pHs and fluoride presence is able to reduce the chemical stability of these ceramics. In this work, the resistance of commercial blocks of micrometric and nanometric sized Y2O3-stabilized ZrO2 ceramics (ProtMat Materiais Avançados® and Ivoclar®) was evaluated in Fusayama artificial saliva of different pHs with (and without) the presence of fluoride ions. The study was based on the analysis of the amount of Zr4+ and Y3+ ions dissolved in the artificial saliva after different exposure times using ICP OES technique. The XRD technique was also employed to investigate the phase transformations occurring during the degradation process in artificial saliva. The micrometric sized ZrO2 ceramics presented higher resistance in the artificial saliva than nanometric sized structures.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 727-728)

Pages:

1136-1141

Citation:

Online since:

August 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Dental Diseases of the Oral Cavity: A Microbial Imbalance www. hsc. wvu. edu/micro/dental2001/thomas/carie13. pdf.

Google Scholar

[2] SABESP – Legislação – Água – Portaria 635/75 sobre Lei 6050/74 www. sabesp. com. br/legislacao/PDF/P63575. pdf.

Google Scholar

[3] J.P. Meirelis: Influência do pH e do teor de fluoretos sobre o comportamento eletroquímico do titanio e das ligas Ti-6Al-4V e Ti-20Ta em saliva artificial. Mestrado (Dissertação). Lorena, 2006. Escola de Engenharia de Lorena (EEL). (SP).

DOI: 10.47749/t/unicamp.1999.175773

Google Scholar

[4] L.E. Mukaeda, A. Robin, C. Santos and S.P. Taguchi: 53° Congresso Brasileiro de Cerâmica (CBC). Guarujá, 07-10 de Junho 2009. Proceeding.. Guarujá 2008. (SP).

Google Scholar

[5] R. Stevens: Trans. Brit. Ceram. Soc. Vol. 80 (1981), p.81.

Google Scholar

[6] Evans, A.G., Heuer, A.H.: J Americ Ceram Soc Vol. 63 (5-6) (1980), p.241.

Google Scholar

[7] R. Stevens: An introduction to zirconia: zirconia and zirconia ceramics. 2nd Ed. New York: Twickenham Magnesium Electrum; (1986).

Google Scholar

[8] K.J., Anusavice: Phillips' Science of Dental Materials, 11th Edition, 832p, Elsevier, 2003 UK.

Google Scholar

[9] P. Zhu, Z. Lin, G. Chen and I. Kiyohiko: Int. J. Fatigue Vol. 26 (2004), p.1109.

Google Scholar

[10] X. Guo: Journal of Physics and Chemistry of Solids Vol. 60 (1999), p.539.

Google Scholar

[11] S. Ban: Japanese Dental Science Review Vol. 44 (2008), p.3.

Google Scholar

[12] T. Tsukada, S. Venigalla, A.A. Morrone and J.H. Adair: J. Am. Ceram. Soc. Vol. 82 (1999), p.1169.

Google Scholar

[13] J. Schilm, M. Herrmann, and G. Michael: J. Eur. Ceram. Soc. (2004), p.24.

Google Scholar

[14] Powder Diffraction File Inorganics Phases: alphabetical index, inorganics phases, JCPDS/international centre for diffraction data, Swarthmore, Pennsylvania, (1979).

Google Scholar

[15] S. Catarrin, I. Frateur, M. Musiani and B. Tribollet: J. Electrochem. Soc. Vol. 147 (2000), p.3277.

Google Scholar