Extracellular Synthesis of Silica Oxide Particles by Fusarium oxysporum from Rice Husk Ash

Article Preview

Abstract:

Extracellular synthesis of silica particles was carried out by Fusarium oxysporum mycelia using rice husk ash (RHA) as raw material. RHA before and after bioprocessing was analyzed by SEM and specific surface area. Dissolved silica was quantified using colorimetry. Incubation of rice husk ash with F. Oxysporum at 28°C and pH 6.8 indicated that 80% silica was dissolved and micrographs of RHA before and after reaction with fungi showed that the morphology of silica particles changed and the average size decreased (~600 to ~5 µm). Moreover, specific volume pore of particles was reduced from 0.026 to 0.013 cm3/g and surface area increased from 115 to 125 m2/g. Dissolved silica corresponds to 177 m2/g. It is concluded that synthesis of oxide materials using fungal biotransformation is a viable process to obtain added value products from agro-industrial waste materials.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 727-728)

Pages:

1153-1157

Citation:

Online since:

August 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] K. Nakagawa, H. Matsuyama, T. Maki, M. Teramoto, N. Kubota, Separation and Purification Technology, 44 (2005) 145-151.

DOI: 10.1016/j.seppur.2005.01.003

Google Scholar

[2] I.J. Bruce, J. Taylor, M. Todd, M.J. Davies, E. Borioni, C. Sangregorio, T. Sen, Journal of Magnetism and Magnetic Materials, 284 (2004) 145-160.

DOI: 10.1016/j.jmmm.2004.06.032

Google Scholar

[3] L. -Y. Lin, J. -T. Kuo, H. Bai, Journal of Hazardous Materials, 192 (2011) 255-262.

Google Scholar

[4] G. Chandrasekar, K. -S. You, J. -W. Ahn, W. -S. Ahn, Microporous and Mesoporous Materials, 111 (2008) 455-462.

DOI: 10.1016/j.micromeso.2007.08.019

Google Scholar

[5] L.Y. Lin, H. Bai, Microporous and Mesoporous Materials, 136 (2010) 25-32.

Google Scholar

[6] J.D. Martínez, T. Pineda, J.P. López, M. Betancur, Energy, 36 (2011) 3846-3854.

Google Scholar

[7] E. Natarajan, A. Nordin, A.N. Rao, Biomass and Bioenergy, 14 (1998) 533-546.

Google Scholar

[8] C. Prompubess, L. Mekasut, P. Piumsomboon, P. Kuchontara, Korean Journal of Chemical Engineering, 24 (2007) 989-995.

DOI: 10.1007/s11814-007-0109-4

Google Scholar

[9] J.D. Martinez, T. Pineda, J.P. Lopez, M. Betancur, Energy, 36 (2011) 3846-3854.

Google Scholar

[10] J.A. Junkes, V.P. Della, W. Acchar, A.P.N. Oliveira, D. Hotza, Ind Ceram, 26 (2006) 11-15.

Google Scholar

[11] M. Rozainee, S.P. Ngo, Proceedings of the 18th International Conference on Fluidized Bed Combustion, (2005) 169-176.

Google Scholar

[12] V. Bansal, A. Ahmad, M. Sastry, J Am Chem Soc, 128 (2006) 14059-14066.

Google Scholar

[13] T.L. Riddin, M. Gericke, C.G. Whiteley, Nanotechnology, 17 (2006) 3482-3489.

Google Scholar

[14] Y. Govender, T. Riddin, M. Gericke, C.G. Whiteley, Biotechnol Lett, 31 (2009) 95-100.

Google Scholar

[15] C.L. Schelske, E.F. Stoermer, Science, 173 (1971) 423-424.

Google Scholar

[16] V. Bansal, A. Ahmad, M. Sastry, Journal of the American Chemical Society, 128 (2006) 14059-14066.

Google Scholar

[17] V. Bansal, A. Sanyal, D. Rautaray, A. Ahmad, M. Sastry, Adv Mater, 17 (2005) 889-+.

Google Scholar

[18] H. Ehrlich, K.D. Demadis, O.S. Pokrovsky, P.G. Koutsoukos, Chemical Reviews, 110 (2010) 4656-4689.

Google Scholar

[19] M. Rozainee, S.P. Ngo, A.A. Salema, K.G. Tan, M. Ariffin, Z.N. Zainura, Bioresource Technol, 99 (2008) 703-713.

DOI: 10.1016/j.biortech.2007.01.049

Google Scholar

[20] M.F.M. Zain, M.N. Islam, F. Mahmud, M. Jamil, Construction and Building Materials, 25 (2011) 798-805.

Google Scholar