Properties of Calcium Phosfate Cement with Addition of Dispersant and Hydrogel

Article Preview

Abstract:

The calcium phosphate cements (CPCs) have attracted great interest for use in orthopedics and dentistry as replacements for damaged parts of the skeletal system,showing good biocompatibility and osseointegration. These characteristics allow its use as a bone graft.Several studies in literature have shown that the addition of polymeric additives has a strong influence on the mechanical properties of cement. The low mechanical strength is the main impediment to a broader use of calcium phosphate bone cement (CPCs) as implant material. The aim of this work was evaluate the strength of a CPC based on α-tricalcium phosphate, with polymeric additions. CPC was synthesized and sodium alginate were added (1%, 2% and 3% by weight) and ammonium polyacrylate (3%; dispersant) in aqueous solution. Specimens were molded and evaluated for density, pH, porosity, in vitro test (Simulated Body Fluid),crystalline phases and mechanical strength. The results show the increase of the mechanical properties of cement when added with sodium alginate and dispersant.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 727-728)

Pages:

1170-1174

Citation:

Online since:

August 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] H.A. Cardoso: Cimento de Alfa-TCP com Diferentes Aditivos: Cinética da Reação de Cura, Propriedades Mecânicas e Avaliação da Citotoxicidade. Mestrado (Dissertação). Campinas, 2010. Universidade Estadual de Campinas (UNICAMP) (SP).

DOI: 10.47749/t/unicamp.2010.772596

Google Scholar

[2] F.C. Driessens, M.M.G. Boltong, O. Bermúdez: Journal of Materials Science: Materials in . Medicine Vol. 4 (1993), p.503.

Google Scholar

[3] D. Yu, J. Wong, Y. Matsuda, J.L. Fox, W.I. Higuchi and M. Otsuka: J Pharm Sci Vol. 81 (6) (1992), p.529.

Google Scholar

[4] L.A. Santos, R.G. Carrodeguas, A. O Boschi and A.C. Arruda: Artificial Organs, Blackwell Publishing, International Society for Artificial Organs. 27(5): 412–418. Inc. © (2003).

DOI: 10.1046/j.1525-1594.2003.07248.x

Google Scholar

[5] M.P. Ginebra, E. Fernández, E.A.P. Maeyer, R.M.H. Verbeeck, M.G. Boltong, J. Ginebra, F.C.M. Driessens and J.A. Planell: J. Dent. Res. Vol. 76 (4) (1997), p.905.

DOI: 10.1177/00220345970760041201

Google Scholar

[6] E. Fernández, M.P. Ginebra, M.G. Boltong and R.M.H. Verbeeck: J Biomed Mater Res Vol. 32 (1996), p.367.

Google Scholar

[7] O. Bermúdez, M.G. Boltong, F.C.M. Driessens and J.Á. Planell: J Mater Sci Mater Med Vol. 5 (1994), p.144.

Google Scholar

[8] F.C.M. Driessens, E. Fernández, M.P. Ginebra, M.G. Boltong and J.A. Planell: Anal. Quim. Int. Ed. Vol. 93 (1997), p. S38 - S43.

Google Scholar

[9] J.L.M. Machado. Desenvolvimento de Cimento Ósseo de Fosfato de Cálcio como Suporte para o Crescimento de Tecido. Mestrado Dissertação). Porto Alegre, (2007).

Google Scholar

[10] L.A. Santos: Desenvolvimento de Fosfato de Cálcio reforçado por Fibras para uso na área médico-odontológica. CAMPINAS, (2002).

DOI: 10.47749/t/unicamp.2002.226008

Google Scholar

[11] L.A. Santos, R.G. Carrodégas: Projeções Vol. 23 (2005), p.47.

Google Scholar

[12] A.H.L. Rocha, L.A. Santos and C.P. Bergmann Influência de aditivos na injetabilidade de cimento ósseo de fosfato tricálcico (2006).

DOI: 10.1590/s1517-70762006000300022

Google Scholar