Isoconversional Kinetic Analysis of Pyrolysis of Sugarcane Bagasse

Article Preview

Abstract:

This paper presents a kinetic study of pyrolysis of sugarcane bagasse from dynamic thermogravimetric experiments (TG). The methods of Kissinger, Ozawa, Starink, Kissinger-Akahira-Sunose and Friedman were used to estimate the activation energy. These methods consider the temperature shifts with increase of heating rate for a given conversion in dynamic TG tests. The activation energy values obtained by the isoconversional methods were in a range 182.8 192.4 kJ·mol-1, values very close to the other biomasses presented by literature.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 727-728)

Pages:

1830-1835

Citation:

Online since:

August 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] D. Mohan, C.U. Pittman Jr and P.H. Steele: Energy Fuels Vol. 20 (2006), p.848.

Google Scholar

[2] C. Di Blasi: Int. J. Heat Mass TransferVol. 41 (1998), p.4139.

Google Scholar

[3] J.J. Manyà and J. Arauzo: Chem. Eng. J. Vol. 139 (2008), p.549.

Google Scholar

[4] R.S. Conceição Filho, M.A.S. Barrozo, J.R. Limaverde and C.H. Ataíde: Drying Technology Vol. 16 (1998), p. (2049).

DOI: 10.1080/07373939808917511

Google Scholar

[5] C.R. Duarte, J.L.V. Neto, M.H. Lisboa, R.C. Santana, M.A.S. Barrozo and V.V. Murata: Brazilian Journal of Chemical Engineering Vol. 21 (2004), p.59.

Google Scholar

[6] F.G. Cunha, K.G. Santos, C.H. Ataíde, N. Epstein and M.A.S. Barrozo: Industrial & Engineering Chemistry Research Vol. 48 (2009), p.976.

Google Scholar

[7] K.G. Santos, V.V. Murata and M.A.S. Barrozo: Canadian Journal of Chemical Engineering Vol. 87 (2009), p.211.

Google Scholar

[8] M.A.S. Barrozo, C.R. Duarte, N. Epstein, J.R. Grace and C.J. Lim: Industrial & Engineering Chemistry Research Vol. 49(2010), p.5102.

Google Scholar

[9] S. Xiu, N. Wang, W. Yi, B. Li and G. Shahbazi: Biosystems Eng. Vol. 100 (2008), p.79.

Google Scholar

[10] T.S. Lira, K.G. Santos, V.V. Murata, M. Gianesella and M.A.S. Barrozo: Chem. Eng. Technol. Vol. 33 (2010), p.1699.

Google Scholar

[11] S Vyazovkin and C. A. Wight: Thermochim. Acta 1 Vol 340 (1999), p.53.

Google Scholar

[12] E. Biagini, F. Lippi, L. Petarca and L. Tognotti: Fuel Vol 81 (2002), p.1041.

Google Scholar

[13] Y.S. Cho, M.J. Shim and S.W. Kim: Mater. Chem. Phys. Vol. 52 (1998), p.94.

Google Scholar

[14] P. Stolarek and S. Ledakowicz: Thermochim. Acta Vol. 433 (2005), p.200.

Google Scholar

[15] M.J. Starink: Thermochim. Acta Vol. 288 (1996), p.97.

Google Scholar

[16] T. Akahira and T. Sunose: Res. Rep. Chiba Inst Technol Vol. 16 (1971), p.22.

Google Scholar

[17] H.L. Friedman: J Polym Sci Part C – Polym Symp. Vol. 6 (1964), p.183.

Google Scholar

[18] R.M.B. Moreno, E.S. Medeiros, F.C. Ferreira, N. Alves, P. S Gonçalves and L.H.C. Mattoso: Plast. Rubber Compos. Vol. 35 (2006), p.15.

Google Scholar

[19] F. Yao, Q. Wu, Y. Lei, W. Guo and Y. Xu: Polym. Degrad. Stab. Vol 93 (2008), p.90.

Google Scholar

[20] H. E. Kissinger: J. Res. Natl. Bur. Stand. Vol. 57 (1956), pp.217-221.

Google Scholar

[21] T. Ozawa: Bull. Chem. Soc. Jpn. Vol. 38 (1965), p.1881.

Google Scholar

[22] S. Hu, A. Jess and M. Xu: Fuel Vol. 86 (2007), p.2778.

Google Scholar