Effects of the Precursor Solution Addition Time in the Solochemical Synthesis of ZnO Nanocrystals

Article Preview

Abstract:

The solochemical method was applied to prepare ZnO nanocrystals at low temperature, using sodium hydroxide and zinc chloride as starting materials. In this work, different addition times of the precursor solution were adopted and their effects on the crystalline domains (or crystallite) size and particle morphology of the obtained samples were investigated. The synthesized products were characterized by X-ray powder diffraction (XRPD) and transmission electron microscopy (TEM) techniques. The XRPD results revealed that all samples produced have a single ZnO hexagonal wurtzite phase (space group P63mc) under anisotropic strain. The parallel to perpendicular crystallite size ratio was about 1.21 for the sample produced with instantaneous addition of the precursor solution and 1.19 for 1 h longer addition time. The anisotropic strains become about 12% smaller for the sample produced with longer addition time. The TEM results of the samples showed ZnO nanometric particles with nearly rounded and rod-like morphologies.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 727-728)

Pages:

856-860

Citation:

Online since:

August 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. Kubota, K. Haga, Y. Kashiwaba, H. Watanabe, B.P. Zhang and Y. Segawa: Appl. Surf. Sci. Vol. 216 (2003), p.431.

Google Scholar

[2] Y. -S. Fu, X. -W. Du, J. Sun, Y. -F. Song and J. Liu: J. Phys. Chem. Vol. 111 (2007), p.3863.

Google Scholar

[3] Ü. Özgür, Y.I. Alivov, C. Liu, A. Teke, M.A. Reshchikov, S. Doğan, V. Avrutin, S. -J. Cho and H. Morkoçd: J. Appl. Phys. Vol. 98 (2005), pp.1-103.

Google Scholar

[4] S. Singh, P. Thiyagarajan, K. Mohan Kant, D. Anita, S. Thirupathiah, N. Rama, B. Tiwari, M. Kottaisamy and M.S. Ramachandra Rao: J. Phys. D: Appl. Phys. Vol. 40 (2007), p.6312.

DOI: 10.1088/0022-3727/40/20/s15

Google Scholar

[5] J. -X. Duan, H. Wang, X. -T. Huang: Chin. J. Chem. Phys. Vol. 20 (2007), p.613.

Google Scholar

[6] S.M. Al-Hilli and M. Willander: J. Nanopart. Res. Vol. 8 (2006), p.79.

Google Scholar

[7] C.A.C.M. Dias and H.R. Paes Júnior: Revista Matéria Vol. 11 (2006), p.267.

Google Scholar

[8] A.C.F.M. Costa, M.A.F. Ramalho, L.S. Neiva, S. Alves-Jr, R.H.G.A. Kiminami and L. Gama: Rev. Eletrônica de Mat. E Proc. Vol. 2. 3 (2007), p.14.

Google Scholar

[9] K.G. Kanade, B. B Kale, R.C. Aiyer and B.K. Das: Mater. Res. Bull. Vol. 41 (2006), p.590.

Google Scholar

[10] G.M. Duffy, S.C. Pillai and D.E. Mccormack: Smart Mater. Struct. Vol. 16 (2007), p.1379.

Google Scholar

[11] C. Wu, X. Qiao, J. Chen, H. Wang, F. Tan and S. Li: Materials Letters Vol. 60 (2006), p.1828.

Google Scholar

[12] Y. Hu and H.J. Chen: J. Nanopart. Res. Vol. 10 (2008), p.401.

Google Scholar

[13] M. Gusatti, J.A. Rosario, G.S. Barroso, C.E.M. Campos, H.G. Riella and N.C. Kuhnen: Chemical Engineering Transactions Vol. 17 (2009), p.1017.

Google Scholar

[14] M.R. Vaezi and S.K. Sadrnezhaad: Materials & Design Vol. 28 (2007), p.515.

Google Scholar

[15] M. Gusatti, J. de Almeida do Rosário, C.E. Maduro de Campos, N. Cabral Kunhen, E. Urano de Carvalho, H. Gracher Riella and A.M. Bernardin: J. Nanosci. and Nanotechnol. Vol. 10 (2010), p.4348.

DOI: 10.1166/jnn.2010.2198

Google Scholar

[16] A.C. Larson and R.B. Von Dreele, in: General Structure Analysis System (GSAS), Los Alamos National Laboratory Report LAUR, 86-748 (2000).

Google Scholar

[17] B.H. Toby: J. Appl. Cryst. Vol. 34 (2001), p.210.

Google Scholar

[18] P. Stephens, J. Appl. Cryst. Vol. 32 (1999) p.281.

Google Scholar

[19] ICSD (Inorganic Crystal Structure Database), Gmelin-Institut für Anorganische Chemie and Fachinformationszentrum, FIZ, Karlsruhe (2007).

Google Scholar

[20] H. Sowa, H. Ahsbahs: Journal of Applied Crystallography Vol. 39 (2006), p.169 ICSD code 154486.

Google Scholar