Sintering of B4C-SiC Composites with ALN-Y2O3 Addition

Article Preview

Abstract:

One suitable material candidate to improve B4C mechanical properties is SiC. B4C-SiC ceramic composites are very promising armor materials because B4C and SiC are intrinsically very hard. In this work a pressureless sintering study of B4C-SiC ceramics was made. B4C-SiC mixtures were prepared with SiC concentration from 10 to 50 wt%. Without the external applied pressure during sintering it was necessary to add sintering aid. The additive system AlN-Y2O3 was investigated as sintering aid. Samples were densified by pressureless sintering at 2000 °C/30 min in an argon atmosphere. B4C-SiC composites were analyzed by XRD and SEM. Bulk density and total weight loss were also measured. Density higher than 93 % of the theoretical value was determined and microhardness of 30.3 GPa was achieved for composite with 10 wt% of SiC sintered with AlN-Y2O3 additive.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 727-728)

Pages:

850-855

Citation:

Online since:

August 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] F. Thevenot: J. Eur. Ceram. Soc. Vol. 6 (1990), p.205.

Google Scholar

[2] G.L. Kalandadze, and S.O. Shalamberidze: J. Solid. State Chem. Vol. 154 (2000), p.194.

Google Scholar

[3] R.M. Rocha and F.C.L. Melo: Mat. Sci. Forum Vols. 660-661 (2010), p.171.

Google Scholar

[4] A. Goldestein, Y. Yeshurum and A. Goldenberg: J. Eur. Ceram. Soc. Vol. 27 (2007), p.695.

Google Scholar

[5] L.S. Sigl: J. Eur. Ceram. Soc. Vol. 18 (1998), p.1521.

Google Scholar

[6] Y.G. Tkachenko, V.F. Britum, E.V. Prilutskii, D.Z. Yurchenko, and G.A. Bovkun: Powder Metall. Met. Ceram. Vol. 44 (2005), p.196.

DOI: 10.1007/s11106-005-0080-8

Google Scholar

[7] M. Uehara, R. Shiraishi, A. Nogami, N. Enomoto, and J. Hojo: J. Eur. Ceram. Soc. Vol. 24 (2004), p.409.

Google Scholar

[8] S. Tariolle, C. Reynaud, F. Thevenot, T. Chartier, and J. L. Besson: J. Sol. Stat. Chem. Vol. 177 (2004) p.487.

Google Scholar

[9] R.M. Rocha, F.C.L. Melo: Mat. Sci. Forum Vols. 591-593 (2008), p.493.

Google Scholar

[10] V.A. Izhevskyi, L.A. Genova, J.C. Bressiani, and A.H.A. Bressiani: Mater. Res. Vol. 3 (2000), p.131.

DOI: 10.1590/s1516-14392000000400007

Google Scholar

[11] S. Prochazka: Special Ceramics., edited by P. Popper, British Ceram. Res. Assoc., Stoke-on-Trent, (1975), p.6, 171-8.

Google Scholar

[12] H.N. Yoshimura, A.C. da Cruz, Y. Zhou, and H. Tanaka: J. Mater. Sci. Vol. 37 (2002), p.1541.

Google Scholar

[13] X.F. Zhang, Q. Yang, and L.C. De Longhe: Acta. Mat. Vol. 51 (2003) p.3849.

Google Scholar

[14] M. Omori and H. Takei: J. Mater. Sci. Vol. 23 (1988), p.3744.

Google Scholar

[15] V.A. Izhevskyi, J.C. Bressiani, and A.H.A. Bressiani: J. Am. Ceram. Soc. Vol. 88 (2004), p.1115.

Google Scholar

[16] J. Schneider, K. Biswas, G. Rixecker, and F. Aldinger: J. Am. Ceram. Soc. Vol. 86 (2003), p.501.

Google Scholar

[17] M. Nader, F. Aldinger and M.J. Hoffmann: J. Mater. Sci. Vol. 34 (1999), p.1197.

Google Scholar

[18] Y. Zhou, H. Tanaka, S. Otani, and Y. Bando: J. Am. Ceram. Soc. Vol. 82 (1999), p. (1959).

Google Scholar