Modification of Brazilian Bentonite Clay for Use Nano-Biocomposites

Article Preview

Abstract:

Biopolymers are a growing research issue since they appear as a solution to the emerging environmental concerns that have risen in recent years. They represent an interesting alternative to synthetic polymers for a short-life range of applications. Recently, great attention has been paid to the association between biopolymers with nanosized llers, in particular, to those in which layered silicates are dispersed at a nanometric level in a biopolymer matrix. Surch materials called nanobiocomposites. In this work, Brazilian bentonite clay was organophilized with three organic intercalants by ion-exchange reactions for use in nanobiocomposites. The clay was characterized by X-ray Fluorescence (XRF), X-ray Diffraction (XRD), Fourier Transform infrared spectroscopy (FTIR) and Thermogravimetry (TG). The XRD results confirmed the increased spacing basal because the presence of intercalant molecules in the clay, too confirmed by FTIR. The organoclay showed greater weight loss than the clay without modification. The structure had produced nanobiocomposites exfoliated and/or partially exfoliated.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 727-728)

Pages:

867-872

Citation:

Online since:

August 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R. Chandra and R. Rustgi: Prog Polym Sci Vol. 23 (1998), p.1273.

Google Scholar

[2] S.S. Ray and M. Bousmina: Prog Mater Sci Vol. 50 (8) (2005), p.962.

Google Scholar

[3] L. Avérous: J Macromol Sci-Pol R Vol. C44 (3) (2004), p.231.

Google Scholar

[4] E M. Araújo, A.D. de Oliveira, R. Barbosa and T.J. Alves: Mater Sci Forum Vols. 530-531 (2006), p.709.

Google Scholar

[5] E.M. Araújo, K.D. Araujo and T.R. Gouveia: Mater Sci Forum Vols. 530-531 (2006), p.702.

Google Scholar

[6] S.S. Ray and M. Okamoto: Prog Polym Sci Vol. 28 (2003), p.1539.

Google Scholar

[7] F.R. Valenzuela-Díaz: Key Eng Mat Vols. 189-191 (2001), p.203.

Google Scholar

[8] A.C.V. Coelho, P.S. Santos and H.S. Santos: Quím Nova Vol. 30 (5) (2007), p.1282.

Google Scholar

[9] M. Alexandre and P. Dubois: Mater Sci Eng Vol. 28 (2000).

Google Scholar

[10] T.D.M. Faria, J.R. Bartoli, E.N. Ito and C.C. Nunes, in: Anais do 9º Congresso Brasileiro de Polímeros. Campina Grande. Brasil. Vol. 1 (2007).

Google Scholar

[11] L. Jiang, B. Liu and J. Zhang: Ind Eng Chem Res Vol. 48 (16) (2009), p.7594.

Google Scholar

[12] S. -Y. Gu, K. Zhang, J. Ren and H. Zhan: Carbohyd Polym Vol. 74 (2008), p.79.

Google Scholar

[13] H.C. Ferreira, T. Chen, A.R. Zandonadi and P. Souza Santos: Cerâmica Vol. 18 (1972), p.333.

Google Scholar

[14] E.M. Araújo, R. Barbosa, A.W.B. Rodrigues T.J.A. Melo and E.N. Ito: Mat Sci Eng A Vol. 141 (2007), p.445.

Google Scholar

[15] S.Q.M. Leite, C.H.A. Colodete, L.C. Dieguez and R.A.S. San Gil: Quím Nova Vol. 23 (3) (2000), p.297.

Google Scholar

[16] L.V. Amorim: Melhoria, Proteção e Recuperação da Reologia de Fluidos hidroargilosos para Uso na Perfuração de Poços de Petróleo. Doutorado. (Tese). Campina Grande, 2003. Universidade Federal de Campina Grande (UFCG). (PB).

DOI: 10.24873/j.rpemd.2021.10.846

Google Scholar

[17] F. Chivrac, Z. Kadlecova, E. Pollet and L. Avérous: J Polym Environ Vol. 14 (2006), p.393.

Google Scholar