Scaling Cellular Automaton Simulations of Short-Range Diffusion Processes

Article Preview

Abstract:

By applying the cellular automaton method the short-range diffusion processes in metals can be efficiently simulated. Several examples for the two-and three dimensional modeling of recrystallization and grain-coarsening are know at the literature. In some previous works, results have been performed concerning the two-dimensional, stochastic automatons of grain-coarsening, recrystallization and allotropic transformation. In order to use these simulations also in technological processes, it is necessary to scale the results reached by the simulation. The primary aspect of adapting the automaton in technological processes is the quick-operating simulation. The aim is to develop a most simplified, scalable cellular automaton by which scaling can be efficiently performed.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

150-155

Citation:

Online since:

November 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] B. Chopard – M. Droz: Cellular Automata Modeling of Physical Systems, Cambridge University Press, (2005).

Google Scholar

[2] D. A. Porter - K. E. Easterling: Phase Transformation in Metals and Alloys, Chapman & Hall, London, (1996).

Google Scholar

[3] Sz. Gyöngyösi, A. Tóth, P. Barkóczy: Mat. Sci. Forum, Vol. 659, pp.405-410., (2010).

Google Scholar

[4] Wolf - S. Yip: Materials Interfaces, Kluwer Academic Publishers, Dordrecht, (1992).

Google Scholar

[5] W. H. Press – S. A. Teukolsky – W. T. Wetterling – B. P. Flannery: Numerical Recipes in C, Cambridge University Press, Cambridge, (1992).

DOI: 10.1017/s0263574700010675

Google Scholar

[6] S. Wolfram: A New Kind of Science, Wolfram Media, (2002).

Google Scholar

[7] H. W. Hesselbarth - I. R. Göbel: Acta Metall., Vol. 39, No. 9, pp.2135-2143, (1991).

Google Scholar

[8] C. H. J. Davies: Sripta Mater., Vol. 36, No. 1, pp.35-40, (1997).

Google Scholar

[9] Z. Gácsi ed.: Sztereológia és képlelemzés, Well-Press, Miskolc, (2001).

Google Scholar

[10] J. Verő – M. Káldor: Fémtan, Nemzeti Tankönyvkiadó, Budapest, (1996).

Google Scholar