Infiltration Characteristics and Compressive Behaviour of Metal Matrix Syntactic Foams

Article Preview

Abstract:

The most promising process for metal matrix syntactic foam (MMSF) production is pressure infiltration. In case if it can be advanced to die casting the cost of the MMSFs will drop significantly. The first step on this road is to characterize the kinetics of the pressure infiltration with respect to infiltration pressure and time. Experimental infiltration equipment was built and many preliminary tests were performed on the AlSi12 + SLG system. The load bearing capacity is also important, therefore the compressive behaviour of MMSFs were investigated. According to the results engineering factors (matrix material, size of the microballoons, applied heat treatment, temperature of the tests) have significant effects on the compressive properties.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

68-73

Citation:

Online since:

November 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] I.N. Orbulov, J. Dobránszky, Producing metal matrix syntactic foams by pressure infiltration, Per. Pol. Mech. Eng. 52 (2008: 1) 35-42.

DOI: 10.3311/pp.me.2008-1.06

Google Scholar

[2] P.K. Rohatgi, J.K. Kim, N. Gupta, S. Alaraj, A. Daoud, Compressive characteristics of A356/fly ash cenosphere composites synthesized by pressure infiltration technique, Comp. Part A 37 (2006) 430-437.

DOI: 10.1016/j.compositesa.2005.05.047

Google Scholar

[3] P. K. Rohatgi, R.Q. Guo, H. Iksan, E.J. Borchelt, R. Asthana, Pressure infiltration technique for synthesis of aluminium-fly ash particulate composite, Mater. Sci. and Eng. A 244 (1998) 22-30.

DOI: 10.1016/s0921-5093(97)00822-8

Google Scholar

[4] R.A. Palmer, K. Gao, T.M. Doan, L. Green, G. Cavallaro, Pressure infiltrated syntactic foams – Process development and mechanical properties, Mater. Sci. and Eng. A 464 (2007) 85-92.

DOI: 10.1016/j.msea.2007.01.116

Google Scholar

[5] D.K. Balch, D.C. Dunand, Load partitioning in aluminum syntactic foams containing ceramic microspheres, Acta Mater. 54 (2006), 1501-1511.

DOI: 10.1016/j.actamat.2005.11.017

Google Scholar

[6] D.K. Balch, J.G. O'Dwyer, G.R. Davis, C.M. Cady, G.T. Gray III, D.C. Dunand, Plasticity and damage in aluminium syntactic foams deformed under dynamic and quasi-static conditions, Mater. Sci. and Eng. A 391 (2005) 408-417.

DOI: 10.1016/j.msea.2004.09.012

Google Scholar

[7] T. Bárczy, Gy. Kaptay, Modeling the infiltration of liquid metals into porous ceramics, Mater. Sci. Forum 473-474 (2005) 297-302.

DOI: 10.4028/www.scientific.net/msf.473-474.297

Google Scholar

[8] P.K. Trumble, Spontaneous infiltration of non-cylindrical porosity: close-packed spheres, Acta Mater. 46 (1998) 2363-2367.

DOI: 10.1016/s1359-6454(98)80017-7

Google Scholar

[9] M. Kiser, M.Y. He, F.W. Zok, The mechanical response of ceramic microballoon reinforced aluminum matrix composites under compressive loading, Acta Mater. 47 (1999: 9) 2685-2694.

DOI: 10.1016/s1359-6454(99)00129-9

Google Scholar

[10] G.H. Wu, Z.Y. Dou, D.L. Sun, L.T. Jiang, B.S. Ding, B.F. He, Compression behaviours of cenosphere-pure aluminium syntactic foams, Scripta Mater. 56 (2007) 221-224.

DOI: 10.1016/j.scriptamat.2006.10.008

Google Scholar

[11] Envirospheres Ltd. http: /www. envirospheres. com/products. asp, last accessed: 02. 01. (2012).

Google Scholar

[12] H. M. Jaeger, S.R. Nagel, Physics of the granular state, Science 5051 (1992) 1523-1531.

Google Scholar

[13] ASM Handbook Volume 4, Heat Treating, Third printing, ASM International (1995) 1861-(1960).

Google Scholar

[14] Testing of metallic materials - Compression test of metallic cellular materials, DIN50134 standard, October (2008).

Google Scholar

[15] E.W. Washburn, The dynamics of capillary flow, The Physical Review 17 (1921) 273-283.

Google Scholar

[16] K.A. Semlak, F.N. Rhines, The rate of infiltration of metals, Trans. of The Metall. Soc. of AIME (1958) 325-331.

Google Scholar

[17] R. Asthana, P.K. Rohatgi, N. Tewari, Infiltration processing of metal - matrix composites: a review, Process. of Adv. Mater. 2 (1992) 1-17.

Google Scholar

[18] D. Muscat, R.A.L. Drew, Modelling the infiltration kinetics of molten aluminum into porous titanium carbide, Metall. and Mater. Trans. A 25 (1994) 2357-2370.

DOI: 10.1007/bf02648856

Google Scholar

[19] C. Garcia-Cordovilla, E. Louis, J. Narciso, Pressure infiltration of packed ceramic particulates by liquid metals, Acta Mater. 47 (1999: 18) 4461-4479.

DOI: 10.1016/s1359-6454(99)00318-3

Google Scholar

[20] G. Kaptay, Interfacial Aspects to produce particulate reinforced metal matrix composites, in Affordable Metal-Matrix Composites for High Performance Applications, Eds.: A. B. Pandey, K.L. Kending, T.J. Watson, TMS The Minerals, Metals & Materials Society (2001).

DOI: 10.1002/9781118787120.ch6

Google Scholar

[21] I. N. Orbulov, J. Dobranszky, A. Nemeth, Microstructural characterisation of syntactic foams, J. of Mater. Sci. 44 (1009: 15) 4013-4019.

DOI: 10.1007/s10853-009-3552-2

Google Scholar