Abrasive Wear Testing of Si3N4 Ceramic Composites

Article Preview

Abstract:

Silicon nitride-based nanocomposites with different quantities (0, 1, 2 wt%) of multiwall carbon nanotubes (MWCNT) have been prepared by isostatic pressing. Abrasive tribological tests were carried out at room temperature in ambient atmosphere with various types of abrasives (different material and grain size) and lubricants respectively. Worn surfaces were characterized by surface roughness parameters, surface topography and scanning electron microscope while wear rate was featured by the worn mass. Results indicate that increase in MWCNT-content leads to decrease of abrasive wear resistance which is proven by increase of Ra and Rz roughness parameters and SEM-analyses of the abrasive worn surfaces.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

55-60

Citation:

Online since:

November 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Cs. Balázsi, Z. Kónya, F. Wéber, L. P. Biró, and P. Arató, Preparation and characterization of carbon nanotube reinforced silicon nitride composites. Mat. Sci. Eng. C 23/6-8 pp.1133-1137 , (2003).

DOI: 10.1016/j.msec.2003.09.085

Google Scholar

[2] J. Tatami, T. Katashima, K. Komeya, T. Meguro, and T. Wakihara, Electrically conductive CNT-dispersed silicon nitride ceramics. J. Am. Ceram. Soc., 88, p.2889, (2005).

DOI: 10.1111/j.1551-2916.2005.00539.x

Google Scholar

[3] B. Fényi, N. Hegman, F. Wéber, P. Arató, and C. Balázsi, Si3N4 alapú kerámia kompozitok elektromos vizsgálata. Jövőnk Anyagai, technológiái, 139. évf. 6. sz. pp.: 41-46, (2006).

Google Scholar

[4] Cs. Balázsi, et al., Development of CNT/Si3N4 composites with improved mechanical and electrical properties. Composites, Part B 37 pp.418-424, (2006).

DOI: 10.1016/j.compositesb.2006.02.006

Google Scholar

[5] Cs. Balázsi, Z. Kónya, F. Wéber, L. P. Biró, and P. Arató, Preparation and characterization of carbon nanotube reinforced silicon nitride composites. Materials Sceince and Engineering C 23 pp.1133-1137, (2003).

DOI: 10.1016/j.msec.2003.09.085

Google Scholar

[6] Cs. Balázsi, Development of multifunczional silicon nitride based nanocomposites. Materials Science Forum Vol. 659. ISSN 0255-5476 pp.121-126., (2010).

DOI: 10.4028/www.scientific.net/msf.659.121

Google Scholar

[7] J. Pfeifer, et al., Tribology study of silicon nitride-based nanocomposites with carbon addtions. Materials Sceince Forum ISSN 0255-5476 Vol. 659. pp.235-238., (2010).

DOI: 10.4028/www.scientific.net/msf.659.235

Google Scholar

[8] C.P. Dogan and J. A. Hawk, Microstructure and abrasive wear in silicon nitride ceramics. Wear 250, pp.256-263., (2001).

DOI: 10.1016/s0043-1648(01)00649-4

Google Scholar

[9] Struers, LaboPol-21 Instruction Manual, Type No: 529, Grinding and polishing machine . (1996).

Google Scholar

[10] G. Ellsner, H. Hoven, G. Kiessler, and P. Wellner, Ceramics and Cermaic Composites: Materialographic Preparation. New York: Elsevier Science Inc., (2005).

Google Scholar

[11] Zs. Koncsik, M. B. Maros, and L. Kuzsella, Si3N4/SiC/grafit kerámia kompozitok mechanikai tulajdonságai. GÉP, LXI. évf. 3. szám, pp.10-15., (2010).

Google Scholar