[1]
IEA and WBCSD, Cement Technology Roadmap 2009: Carbon emissions reductions up to 2050, http: /www. iea. org/papers/2009/Cement_Roadmap. pdf, consulted 13/April/(2011).
DOI: 10.1787/9789264088061-en
Google Scholar
[2]
K. Tosun, B. Felekoglu, B. Baradan and I. A. Altun, Portland Limestone Cement Part I - Preparation of Cements, Digest 2009 (2009) 1337-1355, and references herein.
Google Scholar
[3]
European Standard EN 197-1: 2000, Cement: Part 1. Compositions and conformity criteria for common cements, 89/106/EEC.
Google Scholar
[4]
R. Sarkar, S. K. Das, P. K. Mandal and H. S. Maiti, Phase and microstructure evolution during hydrothermal solidification of clay-quartz mixture with marble dust source of reactive lime, Journal of the European Ceramic Society 26(3) (2006).
DOI: 10.1016/j.jeurceramsoc.2004.11.006
Google Scholar
[5]
N. Almeida, F. Branco and J. R. Santos, Recycling of stone slurry in industrial activities: Application to concrete mixtures, Building and Environment 42(2) (2007) 810-819.
DOI: 10.1016/j.buildenv.2005.09.018
Google Scholar
[6]
S. K. Agarwal, and D. Gulati, Utilization of industrial wastes and unprocessed micro-fillers for making cost effective mortars, Construction and Building Materials 20(10) (2006) 999-1004.
DOI: 10.1016/j.conbuildmat.2005.06.009
Google Scholar
[7]
T. Kavas and A. Olgun, Properties of cement and mortar incorporating marble dust and crushed brick, Ceramics − Silikáty 52 (1) (2008) 24-28.
Google Scholar
[8]
Portuguese Directorate General for Energy and Geology, http: /www. dgge. pt.
Google Scholar
[9]
European Standard EN 196-1: 2005. Methods of testing cement: Part 1. Determination of strength, 89/106/EEC.
Google Scholar
[10]
M. Cyr, P. Lawrence and E. Ringot, Efficiency of mineral admixtures in mortars: Quantification of the physical and chemical effects of fine admixtures in relation with compressive strength, Cement and Concrete Research 36(2) (2006) 264-277.
DOI: 10.1016/j.cemconres.2005.07.001
Google Scholar
[12]
J. Péra, S. Husson and B. Guilhot, Influence of finely ground limestone on cement hydration, Cement and Concrete Composites 21(2) (1999), 99-105.
DOI: 10.1016/s0958-9465(98)00020-1
Google Scholar
[13]
R. D. Hooton, M. Nokken and M. D. A. Thomas, Portland-Limestone Cement: State-of-the-Art Report and Gap Analysis for CSA A 3000 (N. SN3053), Cement Association of Canada (2007).
Google Scholar
[14]
P. D. Tennis, M. D. A. Thomas, and W. J. Weiss, State-of-the-Art Report on Use of Limestone in Cements at Levels of up to 15%. (N. SN3148), Portland Cement Association (2011).
Google Scholar
[11]
E. Kadri, S. Aggoun, G. De Schutter and K. Ezziane, Combined effect of chemical nature and fineness of mineral powders on Portland cement hydration, Materials and Structures 43(5) (2010) 665-673.
DOI: 10.1617/s11527-009-9519-6
Google Scholar
[15]
V. L. Bonavetti, V. F. Rahhal, and E.F. Irassar, Studies on the carboaluminate formation in limestone filler-blended cements, Cement and Concrete Research 31(6) (2001) 853-859.
DOI: 10.1016/s0008-8846(01)00491-4
Google Scholar
[16]
Y. Benachour, C. A. Davy, F. Skoczylas and H. Houari, Effect of a high calcite filler addition upon microstructural, mechanical, shrinkage and transport properties of a mortar. Cement and Concrete Research 38(6) (2008) 727-736.
DOI: 10.1016/j.cemconres.2008.02.007
Google Scholar